数学名人名言手抄报精选10篇

100 2023-11-18 18:55 精优范文

无论是在学习还是在工作中,大家肯定对各类手抄报都很熟悉吧,手抄报具有相当强的可塑性和自由性。你所见过的手抄报是什么样的呢?为了让您对于数学手抄报的写作了解的更为全面,下面宣传员给大家分享了10篇数学名人名言手抄报,希望可以给予您一定的参考与启发。

小学三年级数学手抄报内容文字 篇一

数学名人名言手抄报精选10篇

1、常用的面积单位有:(平方厘米)、(平方分米)、(平方米)。

2、理解面积的意义和面积单位的意义。

面积:物体表面或封闭图形的大小,叫做它们的面积。

1平方米:边长是1米的正方形,它的面积是1平方米。

1平方分米:边长是1分米的正方形,它的面积是1平方分米。

1平方厘米:边长是1厘米的正方形,它的面积是1平方厘米。

3、在生活中找出接近于1平方厘米、1平方分米、1平方米的例子。例如1平方厘米(指甲盖)、1平方分米(电脑光盘或电线插座)、1平方米(教室侧面的小展板)。

4、区分长度单位和面积单位的不同。长度单位测量线段的长短,面积单位测量面的大小。

5、比较两个图形面积的大小,要用(统一)的面积单位来测量。

背熟:

(1)边长(1厘米)的正方形,面积是(1平方厘米)。

(反过来也要会说。面积是1平方厘米的正方形,它的边长是1厘米。)

(2)边长(1分米)的正方形,面积是(1平方分米)。

(3)边长(1米)的正方形,面积是(1平方米)。

(4)边长是(100米)的正方形面积是(1公顷),也就是(10000平方米)。

(5)边长是(1千米)的正方形面积是1平方千米。

简单的数学知识手抄报 篇二

以前我总觉得数学就是做一做而已,在实际生活中用不到的,但是今天的一件事情让我改变了想法。

快要开学了,可是我的铅笔和橡皮都不翼而飞了,我东翻翻西找找,可最终还是没找到,我想要和妈妈一起去买铅笔和橡皮,可妈妈为了锻炼我的数运算能力就给了我十块钱,要求说家里的书本也不多了,你就用这十块钱把它们都买来吧!

我急急忙忙的赶到书店,放眼望去,哇!有各式各样的铅笔,有不同形状的橡皮,还有五颜六色的`笔记本……陈列在书柜上看的我眼花缭乱,我到前去左挑右选看中了一块圆圆的西瓜橡皮,又看中了一根蓝色,而且上面还有着图案的铅笔。

我找到了阿姨,阿姨说:“铅笔三元,橡皮四元,我犯了难,可是我拿数字一算,笑了,说:“是七元,对吗?阿姨?”阿姨:对了,你真是一个数学小天才,回到家后妈妈看到我带着文具回到家,非常高兴,亲吻着我说:“你真是一个天才。”我也非常高兴,心想:“今天我学会帮妈妈买东西啦。”

数学真是有趣,以后我还要去买东西,增加我的数学知识,成为一个小天才。

小学三年级数学手抄报内容文字 篇三

时间单位关系:

一、年

地球围绕太阳旋转一周所用的时间叫做一年。

二、平年

规定1平年是365天。

三、闰年

通常公历年份是4的倍数的是闰年,但公历年份是整百数的,必须是400的倍数才是闰年。

四、季度

一年有4个季度,一、二、三月是第一季度,四、五、六月是第二季度,七、八、九月是第三季度,十、十一、十二月是第四季度。

五、月

一年有12个月,一、三、五、七、八、十、十二月是31天,二、四、六、九、十一月是30天,平年的二月是28天,闰年的二月是29天。

六、旬

一个月分成上旬、中旬、下旬,1日到10日是上旬,11日至20日是中旬,21日至月底是下旬。

七、时分秒

1日(天)=24小时,1小时=60分,1分=60秒。

八、24时计时法

从0时到24时的计时法叫做24时计时法。从夜里12时开始是0时,接下去是1时、2时……直到中午12时,再接下去就是下午的13时、14时……再到夜里24时(也就是第二天的0时)。

小学三年级数学手抄报内容文字 篇四

一个星期天的早晨,我和我的朋友一起去打篮球。

过了一会儿,我们俩打累了,就到观众席上去休息。突然间,我想到了一个问题,我就禁不住说出来:“小明一分钟投8个球,小红一分钟投6个球,他们一起投了8分钟之后,小红提高命中率一分钟投8个球,小明由于体力不支减少投球只数一分钟投6个球,问多少分钟后小红和小明投进的只数相同?”

大概是我朋友太累的缘故,这么简单的问题他都答不上来,他想了一会儿没做出来,过了好长时间他还是没想出来。时间一分一秒的过去了,他实在想不出来,只得不好意思地说:“没了草稿本,我做不出来。”我知道,就算他有草稿也未必做得出来。

我自豪地说:“原来小明一分比小红多投进2个,一共投了8分钟,也就是8×2=16(个),后来小红反过来每分比小明多投4个,那么16个球要多投几分钟呢?16÷4=4(分),要4分钟才能追上。”他说:“你真厉害!”“我是天才嘛!”我开玩笑说。我俩都笑了。

通过这件事,我发现生活中的数学是无处不在,生活中、学习中、还有工作中到处都有。从此,我就更加喜欢数学了。

数学手抄报的资料 篇五

数字歇后语

四面脑勺子--没脸

四十里地不换肩--抬杠的好手

四棱子鸡蛋--没处寻;难寻

四大金刚弹琵琶--不谈(弹)也得谈(弹)

四寸高的人耍三寸长的笔--小人要写大文章

四两棉花一张弓--从何谈(弹)起

四月的花园--有理(李)有性(杏)

关于数学的名言

1) 数学是无穷的科学。――赫尔曼外尔

2) 在数学中最令我欣喜的,是那些能够被证明的。东西。——罗素

3) 在数学中,我们发现真理的主要工具是归纳和模拟。——拉普拉斯

4) 数学是锻炼思想的体操。——加里宁

5) 一个数学家越超脱越好。——无名氏

6) 这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。――A.N.怀特海

7) 数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的。——开普勒

8) 数学发明创造的动力不是推理,而是想象力的发挥。——德摩

9) 如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。——柏拉图

10) 历史使人明智,诗歌使人聪慧,数学使人精密,哲理使人深刻,伦理学使人有修养,逻辑与修辞使人善辩。——培根

趣味数学小故事

一只蜗牛不小心掉进了一只枯井里,它趴在井底上哭起来,一只癞蛤蟆过来,翁声翁气的对蜗牛说:“别哭了,小兄弟,哭也没用,这井壁又高又滑,掉到这里只能在这里生活了。我已经在这里生活了许多年了。”

蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀!我决不能像它那样生活在又黑又冷的井底里。”蜗牛对癞蛤蟆说:“癞大叔,我不能生活在这里,我一定要爬出去,请问这口井有多深?”“哈哈哈……,真是笑话,这井有10米深,你小小年纪。又背负着这么重的壳,怎么能爬出去呢?”

“我不怕苦不怕累,每天爬一段,总能爬出去!”第二天,蜗牛吃得饱饱的,开始顺着井壁往上爬了,它不停的爬呀爬,到了傍晚,终于爬了5米,蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就可以爬出去了。”

想着想着不知不觉睡着了,早上,蜗牛被一阵呼噜声吵醒了,一看,原来是癞大叔还以睡觉,他心里一惊:“我怎么离井底这么近?”

原来,蜗牛睡着以后,从井壁上滑下来4米,蜗牛叹了一口气,咬咬牙,又开始往上爬,到傍晚又往上爬了5米,可晚上,蜗牛又滑下来4米,就这样,爬呀爬,滑呀滑,最后坚强的蜗牛终于爬上了井台。聪明的小朋友你能猜出来蜗牛用了多少天才爬上井台的吗?

数学手抄报 篇六

起源

数学(汉语拼音:shùxué;希腊语:μαθηματικ;英语:Mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。

其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数ταμαθηματικ?(tamathēmatiká)。

在中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明。但也要充分肯定他们对数学所做出的贡献。

理论对象

基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。

代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。

这要直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程。而其后更发展出更加精微的微积分。

现时数学已包括多个分支。创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……)。

数学手抄报 篇七

关于华罗庚

有一次,他跟邻居家的孩子一起出城去玩,他们走着走着;忽然看见路旁有座荒坟,坟旁有许多石人、石马。这立刻引起了华罗庚的好奇心,他非常想去看个究竟。于是他就对邻居家的孩子说:

“那边可能有好玩的,我们过去看看好吗?”

邻居家的孩子回答道:“好吧,但只能呆一会儿,我有点害怕。”

胆大的华罗庚笑着说:“不用怕,世间是没有鬼的。”说完,他首先向荒坟跑去。

两个孩子来到坟前,仔细端详着那些石人、石马,用手摸摸这儿,摸摸那儿,觉得非常有趣。爱动脑筋的华罗庚突然问邻居家的孩子:“这些石人、石马各有多重?”

邻居家的孩子迷惑地望着他说:"我怎么能知道呢?你怎么会问出这样的傻问题,难怪人家都叫你‘罗呆子’。”

华罗庚很不甘心地说道:“能否想出一种办法来计算一下呢?”

邻居家的孩子听到这话大笑起来,说道:“等你将来当了数学家再考虑这个问题吧!不过你要是能当上数学家,恐怕就要日出西山了。”

华罗庚不顾邻家孩子的嘲笑,坚定地说:“以后我一定能想出办法来的。”

当然,计算出这些石人、石马的重量,对于后来果真成为数学家的华罗庚来讲,根本不在话下。

金坛县城东青龙山上有座庙,每年都要在那里举行庙会。少年华罗庚是个喜爱凑热闹的人,凡是有热闹的地方都少不了他。有一年华罗庚也同大人们一起赶庙会,一个热闹场面吸引了他,只见一匹高头大马从青龙山向城里走来,马上坐着头插羽毛、身穿花袍的“菩萨”。每到之处,路上的老百姓纳头便拜,非常虔诚。拜后,他们向“菩萨”身前的小罐里投入钱,就可以问神问卦,求医求子了。

华罗庚感到好笑,他自己却不跪不拜“菩萨”。站在旁边的大人见后很生气,训斥道:

“孩子,你为什么不拜,这菩萨可灵了。”

“菩萨真有那么灵吗?”华罗庚问道。

一个人说道:“那当然,看你小小年纪千万不要冒犯了神灵,否则,你就会倒楣的。”

“菩萨真的万能吗?”这个问题在华罗庚心中盘旋着。他不相信一尊泥菩萨真能救苦救难。

庙会散了,看热闹的老百姓都回家了。而华罗庚却远远地跟踪着“菩萨”。看到“菩萨”进了青龙山庙里,小华罗庚急忙跑过去,趴在门缝向里面看。只见 “菩萨”能动了,他从马上下来,脱去身上的花衣服,又顺手抹去脸上的妆束。门外的华庚惊呆了,原来百姓们顶礼膜拜的“菩萨”竟是一村民装扮的。

华罗庚终于解开了心中的疑团,他将“菩萨”骗人的事告诉了村子里的每个人,人们终于恍然大悟了。从此,人们都对这个孩子刮目相看,再也无人喊他“罗呆子”了。

小学三年级数学手抄报内容文字 篇八

1、甲有5块糖,乙有12块糖。每操作一次是由糖多的人给糖少的人一些糖,使得糖少的人的糖数增加一倍。经过2009次这样的操作后,两个人的糖数分别是多少?

解答:(5,12)→(10,7)→(3,14)→(6,11)→(12,5)→(7,10)→(14,3)→(11,6)→(5,12),8次一循环。2009÷8=251……1,所以最后甲有10块,乙有7块。

2、用1—7这七个数码组成三个两位数和一个一位数,并且使这四个数的和等于100。在满足要求的答案中,的数可能是多少?最小的两位数最小可能是多少?

解答:加数数字和为28,结果数字和为1,28-1=27,说明有三个进位,那么个位数字相加一定为20,十位数字相加一定为8。8=1+2+5=1+3+4,所以的数可能为57,最小的数可能为12。

数学手抄报 篇九

数学的意义介绍

数学一种工具,它逻辑性强,能训练人们的思维能力;它注重方式方法,能让你的思维更敏锐;再者就是能帮助你解决一些实际问题。

数学是一门基础学科,除了语言学科以外,其他学科基本上都会运用到数学。如果没有数学,可以说就没有这个世界!有很多看似枯燥又无理取闹的问题在实际生活中都有意想不到的应用。比如计算机的二进制,比如圆锥曲线的应用。也许你只知道数学很麻烦,实际上反光镜、冷却塔的原理都少不了它!数列很无聊,但是魔术师们的洗牌技巧都在这里,不懂数学的人就会被骗!遗忘迁移才让我们可以放心大胆地输入各种帐号和密码,没有地图涂色问题,一块指甲大的电路板恐怕检测到明年也不知道哪里。

数学的作用就是问一些看似精神病但是完全有可能推动人类进步的问题,学数学的意义就是不光会做老师们纯粹为了考大家的题目,更重要的是把这些讨厌的问题变成人人都喜闻乐见的实际性成果,数学家们是默默无闻却强大无比的历史推进者!

数学手抄报 篇十

现代数学时期是指由19世纪20年代至今,这一时期数学主要研究的是最一般的数量关系和空间形式,数和量仅仅是它的极特殊的情形,通常的一维、二维、三维空间的几何形象也仅仅是特殊情形。抽象代数、拓扑学、泛函分析是整个现代数学科学的主体部分。它们是大学数学专业的课程,非数学专业也要具备其中某些知识。变量数学时期新兴起的许多学科,蓬勃地向前发展,内容和方法不断地充实、扩大和深入。

18、19世纪之交,数学已经达到丰沛茂密的境地,似乎数学的宝藏已经挖掘殆尽,再没有多大的发展余地了。然而,这只是暴风雨前夕的宁静。19世纪20年代,数学革命的狂飙终于来临了,数学开始了一连串本质的变化,从此数学又迈入了一个新的时期——现代数学时期。

19世纪前半叶,数学上出现两项革命性的发现——非欧几何与不可交换代数。

大约在1826年,人们发现了与通常的欧几里得几何不同的、但也是正确的几何——非欧几何。这是由罗巴契夫斯基和里耶首先提出的。非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。

后来证明,非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。从这个意义上说,为确立和发展非欧几何贡献了一生的罗巴契夫斯基不愧为现代科学的先驱者。

1854年,黎曼推广了空间的概念,开创了几何学一片更广阔的领域——黎曼几何学。非欧几何学的发现还促进了公理方法的深入探讨,研究可以作为基础的概念和原则,分析公理的完全性、相容性和独立性等问题。1899年,希尔伯特对此作了重大贡献。

在1843年,哈密顿发现了一种乘法交换律不成立的代数——四元数代数。不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。

另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20~30年代,阿贝尔和伽罗华开创了近代代数学的研究。近代代数是相对古典代数来说的,古典代数的内容是以讨论方程的解法为中心的。群论之后,多种代数系统(环、域、格、布尔代数、线性空间等)被建立。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代数系统结构本身的研究。

上述两大事件和它们引起的发展,被称为几何学的解放和代数学的解放。

19世纪还发生了第三个有深远意义的数学事件:分析的算术化。1874年威尔斯特拉斯提出了一个引人注目的例子,要求人们对分析基础作更深刻的理解。他提出了被称为“分析的算术化”的著名设想,实数系本身最先应该严格化,然后分析的所有概念应该由此数系导出。他和后继者们使这个设想基本上得以实现,使今天的全部分析可以从表明实数系特征的一个公设集中逻辑地推导出来。

现代数学家们的研究,远远超出了把实数系作为分析基础的设想。欧几里得几何通过其分析的解释,也可以放在实数系中;如果欧氏几何是相容的,则几何的多数分支是相容的。实数系(或某部分)可以用来解群代数的众多分支;可使大量的代数相容性依赖于实数系的相容性。事实上,可以说:如果实数系是相容的,则现存的全部数学也是相容的。

19世纪后期,由于狄德金、康托和皮亚诺的工作,这些数学基础已经建立在更简单、更基础的自然数系之上。即他们证明了实数系(由此导出多种数学)能从确立自然数系的公设集中导出。20世纪初期,证明了自然数可用集合论概念来定义,因而各种数学能以集合论为基础来讲述。

拓扑学开始是几何学的一个分支,但是直到20世纪的第二个1/4世纪,它才得到了推广。拓扑学可以粗略地定义为对于连续性的数学研究。科学家们认识到:任何事物的集合,不管是点的集合、数的集合、代数实体的集合、函数的集合或非数学对象的集合,都能在某种意义上构成拓扑空间。拓扑学的概念和理论,已经成功地应用于电磁学和物理学的研究。

读书破万卷,下笔如有神。以上就是宣传员给大家分享的10篇数学名人名言手抄报,希望能够让您对于数学手抄报的写作更加的得心应手。

最近更新