高数导数的论文(大学高数论文――导数的应用)

0 2023-12-08 04:26 xswz 手机版

1.大学高数论文――导数的应用

1、任何涉及到时间的瞬时变化率、空间的逐点变化率,都是导数的应用;

2、具体而言,只要涉及到比值的物理量,都存在导数的运用。

例如:

速度、角速度、加速度、角加速度、功率、压强、电流强度、电动势、

比热、压缩知系数、膨胀系数、、、、、、、、

3、在任何自然学科、工程学科、经济学科、人文学科、、、、处处都是运用,

写上一千万本书,也是冰山一角。

4、微积分在几百年前就已经非常成熟了,我们对微积分的理论建立,没有一丝

半毫的道贡献。庞大的现代数学、科学、工程、经济理论的建立,与我们毫不

相干。一切的一切,我们只是学习别人的理论,迄今依然到处充满歪解。

5、导数的学习、运用,在英美是从初中开始的。比我们的专高三学生学的内容要

深、广很多;他们的高中课程是我们大一大二的内容。

6、楼主的问题,是被教师忽悠了。这完全谈不上是论文,至多只是初中生的读书

心得。夸张成论文,显示出的是出题教师的低劣,是对学生的智力的毁灭。这

种教师,百分之属一百万是滥竽充数、害人子弟的货色!

为有这样的教师,感到悲哀,感到愤怒!

为可怜的学生,感到绝望!

2.求导数的论文越精越好,字数至少不少于1000

浅谈导数nbsp;nbsp;nbsp;nbsp;导数是近代数学的重要基础,是联系初、高等数学的纽带,它的引入为解决中学数学问题提供了新的视野,nbsp;是研究函数性质、证明不等式、探求函数的极值最值、求曲线的斜率和解决一些物理问题等等的有力工具。

本文拟就导数的应用,谈一点个人的感悟和体会。nbsp;nbsp;nbsp;nbsp;1以导数概念为载体处理函数图象问题函数图象直观地反映了两个变量之间的变化规律,由于受作图的局限性,这种规律的揭示有时往往不尽人意.nbsp;导数概念的建立拓展了应用图象解题的空间。

nbsp;nbsp;nbsp;nbsp;例1:(2007浙江卷)设nbsp;是函数f(x)的导函数,将y=nbsp;f(x)+f′(x)和的图象画在同一个直角坐标系中,不可能正确的是(D)nbsp;nbsp;nbsp;nbsp;例2:(2005江西卷)nbsp;已知函数y=nbsp;xf′(x)的图象如右图所示(其中f′(x))是函数nbsp;f(x)的导函数),下面四个图象中y=nbsp;f(x)的图象大致是(C)nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;分析:由图象知,f′(1)=f′(-1)nbsp;=0,所以x=±1是函数f(x)的极值点,又因为在(-1,0)上,f′(x)amp;lt;0,在(0,1)上,f′(x)amp;gt;0,因此在(-1,1)上,f(x)单调递减,故选C。nbsp;nbsp;nbsp;nbsp;2以导数知识为工具研究函数单调性对函数单调性的研究,导数作为强有力的工具提供了简单、程序化的方法,具有普遍的可操作方法。

nbsp;nbsp;nbsp;nbsp;例3:已知f(x)=x3+bx2+cx+d是定义在R上的函数,nbsp;其图象交x轴于A、B、C三点,nbsp;点B的坐标为(2,0),且nbsp;f(x)在[-1,0]和[0,2]有相反的单调性.nbsp;①求C的值.nbsp;nbsp;②若函数f(x)在[0,2]和[4,5]也有相反的单调性,nbsp;nbsp;f(x)的图象上是否存在一点M,nbsp;使得f(x)在点M的切线斜率为3b?nbsp;若存在,nbsp;求出M点的坐标.nbsp;若不存在,nbsp;说明理由.nbsp;分析:①f′(x)=3x2+2bx+c,nbsp;nbsp;nbsp;nbsp;∵f(x)在[-1,0]和[0,2]有相反的单调性.nbsp;nbsp;nbsp;nbsp;∴nbsp;x=0是f(x)的一个极值点,nbsp;故f′(0)=0.nbsp;∴c=0.nbsp;nbsp;nbsp;nbsp;②令f′(x)=0得3x2+2bx=0,x1=0,x2=nbsp;nbsp;nbsp;nbsp;因为f(x)在[0,2]和[4,5]nbsp;有相反的单调性,nbsp;nbsp;nbsp;nbsp;nbsp;∴f′(x)在[0,2]和[4,5]nbsp;nbsp;有相反的符号.nbsp;nbsp;nbsp;nbsp;故2≤-2b3≤4,-6≤b≤-3.nbsp;nbsp;nbsp;nbsp;假设存在点M(x0,y0)使得f(x)在点M的切线斜率为3b,则f′(x0)=3b.nbsp;nbsp;nbsp;nbsp;即3x02+2bx0-3b=0.∵△=4b2-4·3·(-3b)=4b(b+9),而f′(x0)=3b.nbsp;nbsp;nbsp;nbsp;∴△amp;lt;0.nbsp;nbsp;nbsp;nbsp;故不存在点M(x0,y0)使得f(x)在点M的切线斜率为3b.nbsp;nbsp;nbsp;nbsp;3证明不等式彰显导数方法运用的灵活性把要证明的一元不等式通过构造函数转化为f(x)amp;gt;0(amp;lt;0)再通过求f(x)的最值,实现对不等式证明,导数应用为解决此类问题开辟了新的路子,使过去不等式的证明方法从特殊技巧变为通法,彰显导数方法运用的灵活性、普适性。nbsp;nbsp;nbsp;nbsp;例4:(1)求证:当a≥1时,不等式对于n∈R恒成立.nbsp;nbsp;nbsp;nbsp;(2)对于在(0,1)中的任一个常anbsp;,问是否存在x0amp;gt;0使得ex0-x0-1amp;gt;a·x022nbsp;ex0成立?如果存在,求出符合条件的一个x0;否则说明理由。

nbsp;nbsp;nbsp;nbsp;分析:(1)证明:(Ⅰ)在x≥0时,要使(ex-x-1)≤ax2e|x|2成立。nbsp;nbsp;nbsp;nbsp;只需证:nbsp;ex≤a2x2ex+x+1即需证:1≤a2x2+x+1ex①nbsp;nbsp;nbsp;nbsp;令y(x)=a2x2+x+1ex,求导数y′(x)nbsp;=ax+1·ex-(x+1)ex(ex)2=ax+-xexnbsp;nbsp;nbsp;nbsp;∴y′(x)=x(a-1ex),又a≥1,求x≥0,故y′(x)nbsp;≥0nbsp;nbsp;nbsp;nbsp;∴f(x)为增函数,故f(x)≥y(0)=1,从而①式得证nbsp;nbsp;nbsp;nbsp;(Ⅱ)在时x≤0时,要使ex-x-1≤ax2e|x|2nbsp;成立。

nbsp;nbsp;nbsp;nbsp;只需证:ex≤a2x2ex+x+1,即需证:1≤ax22e-2x+(x+1)e-x②nbsp;nbsp;nbsp;nbsp;令m(x)=ax22e-2x+(x+1)e-x,求导数得m′(x)=-xe-2x[ex+a(x-1)]nbsp;nbsp;nbsp;nbsp;而φ(x)=ex+a(x-1)在x≤0时为增函数nbsp;nbsp;nbsp;nbsp;故φ(x)≤φ(0)=1-a≤0,从而m(x)nbsp;≤0nbsp;nbsp;nbsp;nbsp;∴m(x)在。

3.大一数学导数在经济中的应用论文怎么写

(一)确定论文提要,再加进材料,形成全文的概要

论文提要是内容提纲的雏型。一般书、教学参考书都有反映全书内容的提要,以便读者一翻提要就知道书的大概内容。我们写论文也需要先写出论文提要。在执笔前把论文的题目和大标题、小标题列出来,再把选用的材料插进去,就形成了论文内容的提要。

(二)原稿纸页数的分配

写好毕业论文的提要之后,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文,考虑序论用1页,本论用17页,结论用1—2页。本论部分再进行分配,如本论共有四项,可以第一项3—4页,第二项用4—5页,第三项3—4页,第四项6—7页。有这样的分配,便于资料的配备和安排,写作能更有计划。毕业论文的长短一般规定为5000—6000字,因为过短,问题很难讲透,而作为毕业论文也不宜过长,这是一般大专、本科学生的理论基础、实践经验所决定的。

(三)编写提纲

论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是经过深思熟虑构成的,写作时能顺利进行。没有这种准备,边想边写很难顺利地写下去。

编写要点

编写毕业论文提纲有两种方法:

一、标题式写法。即用简要的文字写成标题,把这部分的内容概括出来。这种写法简明扼要,一目了然,但只有作者自己明白。毕业论文提纲一般不能采用这种方法编写。

二、句子式写法。即以一个能表达完整意思的句子形式把该部分内容概括出来。这种写法具体而明确,别人看了也能明了,但费时费力。毕业论文的提纲编写要交与指导教师阅读,所以,要求采用这种编写方法。

详细提纲举例

详细提纲,是把论文的主要论点和展开部分较为详细地列出来。如果在写作之前准备了详细提纲,那么,执笔时就能更顺利。下面仍以《培育和完善建筑劳动力市场的思考》为例,介绍详细提纲的写法:

上面所说的简单提纲和详细提纲都是论文的骨架和要点,选择哪一种,要根据作者的需要。如果考虑周到,调查详细,用简单提纲问题不是很大;但如果考虑粗疏,调查不周,则必须用详细提纲,否则,很难写出合格的毕业论文。总之,在动手撰写毕业论文之前拟好提纲,写起来就会方便得多。

4.求一篇大一数学小论文,函数,导数,和物理相关的

著名数学家华罗庚说过:"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学."特别是二十一世纪的今天,数学的应用更是无所不在.那么,我们如何从小打下坚实的数学基础,究竟什么样的课堂教学才适合新一代的学生呢 我认为,在课堂中,由学生去担任学习的主角,才是我们的心愿.那么,数学活动课就是让我们充分体现自主学习的一种教学方式.

活动课上,在老师的指导下,我们分成小组,通过自己动手去测量,拼凑,剪切,计算,去探索发现的规律,掌握数学知识.这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增.

例如,我们上《平行四边形面积得计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴,拼凑变成一个我们已经会计算面积的图形呢 大家七嘴八舌的讨论开了,有的同学发现可以用剪刀沿着平行四边形的高,把它剪成一个直角三角形和一个直角梯形,然后可以把它们拼成一个长方形;一些同学又发现还可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形.同学们通过观察,思考,认识到拼成的长方形的"长"和"宽",分别就是原来平行四边形的"底边"和"高".由此,大家终于自己找到了平行四边形面积公式为:S=ah.再比如,上《有余数的除法》这节课时,老师采用让同学们玩扑克牌的游戏,使大家很快理解和掌握了有余数的除法的计算规律,让大家在轻松愉快的活动中学到知识.

我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快.可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对.

今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析.这道题目是这样的:求3333333333的平方中有多少个奇数数字 分析是这样的:3333333333的平方就是3333333333*3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变.使题目转化为求9999999999*1111111111=(10000000000-1)*1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字.这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数.即3*3=9→积中有1个奇数数字.33*33=1089→积中有2个奇数数字.333*333=110889→积中有3个奇数数字.3333*3333=11108889→积中有4个奇数数字.……

从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面.积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字.

做了这道题,我知道做数奥不能求快,要求懂它的方法.总之,我认为用活动课的方式上数学课,是我们小学生非常喜欢的.在课堂上,每个同学对知识的探索过程充满了好奇心,都迫切渴望通过自己的实验活动,去找到解决问题的方法.学习中,我们充分体验套了做学习的主人的快乐和自豪.希望老师们能多用活动课的方式来上数学课.这样,我们将会学的更扎实,更轻松,更灵活,更优秀.

5.谁能给我提供一篇数学论文

函数的导数表示函数在一点处(瞬时)随自变量变化快慢的程度。

利用它,可以直接研究函数及其图像在一点处的变化性质(例如瞬时速度、切线斜率等)。为了应用导数研究函数在区间上的变化性质,先要熟悉微分学的中值定理。

1. 中值定理 微分学中有费马引理、罗尔定理和拉格朗日中值定理。 拉格朗日定理 如果函数 满足: (ⅰ)在闭区间 , 上连续; (ⅱ)在开区间 , 内可导, 则在 , 内至少存在一点 ,使 或 由图3容易理解,当函数 满足(ⅰ)、(ⅱ),即 是条连续曲线并且在 , 内的每点处有切线时,那么在曲线上(只要把弦AB平行移动)至少有一点P(在图中是 ),使得曲线在该点处的切线与弦AB平行,也就是说,P点处的切线斜率 和弦AB的斜率 相等。

需要注意的是,拉格朗日定理并没有给出求 值的具体方法,它只是肯定了 值的存在,并且至少有一个。如图3中的函数 ,在 , 有 与 两个。

拉格朗日定理的意义是:建立了函数 在区间 , 上的改变量 与函数在区间 , 内某一点 处的导数之间的关系,从而为用导数去研究函数在区间上的性质提供了理论基础。 2. 用导数研究函数的性质 为了使论述方便,我们将使用记号 和 ,它们分别表示开区间 , 和闭区间 , 。

现在我们利用导数来研究函数的单调性。设函数 在 上连续,在 上可导。

如果函数 在 上单调增加,那么,它的图形是一条沿 轴正向上升的曲线,如图(a)所示,这时曲线上各点的切线斜率大于等于零( );如果函数 在 上单调减少,那么,它的图形是一条沿 轴正向下降的曲线,如图(b)所示,这时曲线上各点的切线斜率小于等于零( )。由此可见,函数的单调性与其导数的符号有着密切的联系。

反过来,我们是否可以有导数的符号来判定函数的单调性呢? 一阶导数的符号 在 上任取两点 、,其中 < ,在区间[ , ]上应用微分中值定理,得到 ( < < ) 有上式可见,若 , ,就有 ,于是 , , 在区间 上单调递增。同理可以说明 在区间 上单调递减。

由此我们可以归纳出函数单调性的判别法。 设 在区间 上连续且在区间 上可导,则 (1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数; (2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数。

(3) 如果函数 在区间 上满足 ,则函数 在区间 为常数。 此外,导数的绝对值告诉我们变化率的大小。

当 绝对值较大时,函数曲线就陡峭一些; 绝对值较小时,函数曲线就平坦一些。记住这些,你就可以从一个函数的导数情况判断出函数的一些性态。

曲线的上下凹性 设 在某一区间内可微,一阶导数告诉我们,如果在某一区间内 ,那么 在该区间式递增的; 如果在某一区间内 ,那么 在该区间式递减的。 如果 在某一区间内递增,则它的函数曲线向上弯曲或称为上凹,如果 在某一区间内递减,则它的函数曲线向下弯曲或称为下凹。

当 向上弯曲时,曲线切线的斜率随着 增加而增加,如图所示;当 向下弯曲时,曲线切线的斜率随着 增加而减少, 点 为函数 的拐点,即函数曲线在区域内点 的左边向上凹,在点 的右边向下凹,它是曲线由向上凹变为向下凹的分界点。 二阶导数的符号 函数曲线的向上凹或向下凹、曲线的拐点可以用函数的二阶导数来确定。

设 在区间 上连续且在区间 上可导,则 (1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数,函数曲线上凹; (2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数,函数曲线下凹。 局部极值性 我们说 在点 达到极大值,指的是在 的领域内 为最大,如图所示。

在点 处达到极大值,虽然 = 在整个图像中不是最大,它只是在点 领域内为最大,另一个最大值是B= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最大值。 同样, 在点 达到极小值,指的是在 的领域内 为最小,如图所示。

在点 处达到极小值,虽然 = 在整个图像中不是最小,它只是在点 领域内为最小,另一个最小值是A= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最小值。 函数的极大值和极小值概念是局部性的。

如果 是函数 的一个极大值(或极小值),那只是就点 附近一个局部范围来说, 是函数 的一个极大值(或极小值),如果就函数 整个定义域来说, 不见得是函数 极大值(或极小值)。 我们在微分中值定理一节曾经提到,如果函数 可导,并且点 是它的极值点,那么点 必定是它的驻点,但是函数的驻点未必是它的极值点。

如函数 ,点 =0是它的驻点,但是在 内函数 是单调增加的,所以点 =0不是它的极值点,可见,函数的驻点只是可能的极值点。此外,函数在它不可导点处也可能取得极值,如函数 在点 =0处不可导,但是在该点取得极小值。

最大值与最小值 在前面讨论极值的基础上我们进一步讨论函数在一个区间上的最大值与最小值的求法。最大值与最小值的应用很广泛,人们做任何事情,小到日常用具的制作,大至生产科研和各类经营活动,都要讲究效率,考虑怎样以最小的投入得到最大的产出,这类问题在数学上往往可以归纳为求某一函数在某个区间内的最大与最小值的问题。

现在设函数 在闭区间 , 上连续,在开区间 , 可导,根据闭区间上连续函数的性质可。

6.求高等数学小论文一篇

牛顿、莱布尼茨和微积分微积分的产生是数学上的伟大创造。

它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作 者以及技术人员不可缺少的工具。

从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。 公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。

作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。

三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。

到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。

第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。

第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。

为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。

他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。 1605 年 5 月 20 日,在牛顿手写的一面文件中开始有 “ 流数术 ” 的记载,微积分的诞生不妨以这一天为标志。

牛顿微积分的著作很多写于 1665 - 1676 年间,但这些著作发表很迟。他完整地提出微积分是一对互逆运算,并且给出换算的公式,就是后来著名的牛顿-莱而尼茨公式。

牛顿是那个时代的科学巨人。在他之前,已有了许多积累:哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,微积分在这样的条件下诞生是必然的。

牛顿于 1642 年出生于一个贫穷的农民家庭,艰苦的成长环境造就了人类历史上的一位伟大的科学天才,他对物理问题的洞察力和他用数学方法处理物理问题的能力,都是空前卓越的。尽管取得无数成就,他仍保持谦逊的美德。

如果说牛顿从力学导致 “ 流数术 ” ,那莱布尼茨则是从几何学上考察切线问题得出微分法。他的第一篇论文刊登于 1684 年的《都市期刊》上,这比牛顿公开发表微积分著作早 3 年,这篇文章给一阶微分以明确的定义。

莱布尼茨 1646 年生于莱比锡。 15 岁进入莱比锡大学攻读法律,勤奋地学习各门科学,不到 20 岁就熟练地掌握了一般课本上的数学、哲学、神学和法学知识。

莱布尼茨对数学有超人的直觉,并且对于设计符号很第三。他的微积分符号 “dx\" 和 ”∫” 已被证明是很发用的。

牛顿和莱布尼茨总结了前人的工作,经过各自独立的研究,掌握了微分法和积分法,并洞悉了二者之间的联系。因而将他们两人并列为微积分的创始人是完全正确的,尽管牛顿的研究比莱布尼茨早 10 年,但论文的发表要晚 3 年,由于彼此都是独立发现的,曾经长期争论谁是最早的发明者就毫无意义。

牛顿和莱尼茨的晚年就是在这场不幸的争论中度过的。 牛顿的“流数术” 数学史的另一次飞跃就是研究“形”的变化。

17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克?牛顿(1642~1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念 直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。

牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力不概念的数学反映。

牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形――线、角、体,都看作力学位移的结果。因而,一切变量都是流量。

牛顿指出,“流数术”基本上包括三类问题。 (1)已知流量之间的关系,求它们的流数的关系,这相当于微分学。

(2)已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意。

高数导数的论文