1.数学小论文(2000字)
数学小论文
“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
2.数学论文2000字
《数学课程标准》指出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”
“数学教学必须从学生熟悉的生活情景和感兴趣的事物发包出发,让学生亲身经历参与特定的教学活动,获得一些体验,使他们体会到数学就在身边,从而感受到数学的趣味和作用,体验到数学的魅力,并且通过自主探索,合作交流,将实际问题抽象成数学模型,并对此进行解释和应用。”这就要求数学教师结合学生的生活经验和已有知识来设计富有情趣和意义的活动。
一、源于生活,让生活走进数学课堂,创设轻松愉快的学习情境 教学来源于生活,是生活中数与形的提炼和抽象。小学生数学的认知结构的形成,首先必须依赖于生活实践活动。
现实生活是学习数学的起点。教学中,要创设与学生生活环境知识背景密切相关的,且又是学生感兴趣的学习环境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成和发展过程,获取积极的情感体验,感受数学的力量同事掌握必要的基础知识和技能。
在教学中,以教材为蓝本,注重密切数学与现实生活的联系,创设轻松愉快的数学情境。 现实的学习情境,可以激发学生学习数学的兴趣,充分调动学生学习的积极性和主动性,诱导学生积极思维,使其产生内在学习动机,并主动参与教学活动。
如教学“认位置”,以学生眼前的教室为情境,为学生提供了一个观察生活中人与人、人与物、物与物之间位置关系的场景,让学生在从指定观察到自由观察、换位观察的过程中不断加深对知识的认识和理解,使他们不光会表述物体间的位置关系,还能感受到物体间位置关系的相对性,从而使学习变成一种主动探索的过程。 数学源于生活、根植于生活。
数学学习就要从我们的生活经验和已有的知识点出发,联系生活讲数学,把生活经验数学化,数学问题生活化。激发学习数学的兴趣,深刻体会到生活离不开数学,数学是解决生活问题的钥匙,从而增强学习数学的趣味性。
当我们打开现在的数学课本时,给我们的印象好像一本童话书一样漂亮,把数学知识融入到了同学们非常熟悉的生活中,与同学们身边的生活联系较为密切。对于我们初中的同学来说,在生活中已有一定的与数学有关的数学知识,所以我们对数学有了一定的了解。
在数学学习中我们如何将生活中的经验与数学学习相联系呢? 一、培养主动学习的愿望,体会到身边有数学 数学学习中,要善于观察生活中的实际问题,感受数学与生活的密切联系。我们美丽的校园如诗如画,校园生活丰富多彩。
校园中充满着数学知识,我们在学习《测量旗杆高度》时,同学们利用阳光测同一时刻旗杆影长,人影子长和人高。初步感受了生活中数学的奥妙,而后又通过合作交流的方式测量教学楼的高度,同学们的积极性高涨,积极探讨测量方案,体会生活中如何运用数学。
最后同学们又用小镜子进行测量旗杆的高度进一步体会数学就在我们身边,在我们的生活中。整节课,学生们“玩”的很开心,“大课堂”气氛很活跃,改变了以往枯燥乏味的被动式课堂,每一位学生都积极主动的参与到活动学习中去,“学习”热情很高。
同学们在不知不觉中圆满完成了整节课的学习任务。这样的数学课堂,让同学们深切体会到原来数学就在自己身边,身边就有数学,而且离得很近,对数学逐渐产生亲切感,从而增强了同学们主动学习的愿望。
二、善于发现生活中的数学问题……。
3.急求一篇数学小论文(1500字左右)
从历史的角度看,每一个重要的时期,经济、产业或者社会发生根本性变化的时候,数学常常在其中起了十分重要甚至是先导的作用。
例如17世纪欧洲文艺复兴时期,产业革命和数学的发展是密切结合在一起的。 17世纪下半叶,在前人工作的基础上,英国著名科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自完成了微积分的创立研究工作。
“有人说当时的产业革命源于瓦特发明了蒸汽机,但在那一时期,牛顿和莱布尼茨创建和使用微积分,使得人们可以能够更好地处理实际问题。因为,过去的初等数学只能处理常量问题,比如三角形和长方形的面积可以计算,但是曲线形就不行了。
数学起源于数,数起源于数数。在远古时代,人们都用一点、一竖或者一横来记录一,用两点、两竖或者两横来记录二,这样的记录特征孕育了加法。
但是当考察到五的时候,人类就未必采用五点、五竖或者五横了。一旦到了十,几乎就没有再用十点、十竖或者十横来表示了。
表示五和十的记号的产生是一种飞跃。由形象到抽象是一种质的变化,而且这种抽象导致了加法规律。
因此抽象是数学与生俱来的特征,导致了它的深邃和睿智。 著名数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。
这是对数学与生活的精彩描述。数学与社会生活相互依存,相互融合。
数学问题来源于生活,而生活问题又可用数学知识来解决。可以这么说,数学就在我们身边,举目望去,到处都是数、形、大小、长短、位置、分类、加减等数学信息。
比如说,上街买东西要用到加减法乘除法来计算应该付多少钱和找零是多少,另外统计上街花费的时间、所走的路程、购买东西的种类和重量都需要用数学语言来记录。由此可见,日常生活中经常会用到数学知识,而这些数学知识也给我们带来了不少帮助。
学习了长方形、正方形面积的计算及组合图形的计算后,可以运用所学知识解决生活中的实际问题。比如通过测量长和宽来算一算一间住房的面积有多大?在学习了圆柱体的体积计算后,可以通过测量底面直径和高计算水杯的容积是多少? 再比如三角形,我们的门是长方形,时间久了它就会变成平行四边形。
这样的话,开门关门就会压到地面,关门非常不好关。这个时候我们就可以用到三角形的性质了,三角形具有稳定性,在生活中可以起到固定的作用。
所以我们可以在门上以斜线的方式给门订上一根长条,让门变成两个三角形组合的四边形。这样的话,门具有了稳定性,就不会变成平行四边形了。
因此门就不会斜下来了,自然也不会出现不好关门的现象了。 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。
譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解直角三角形有关知识的应用。
类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
4.生活中的数学1500字小论文
数学源于生活、根植于生活。
数学教学就要从学生的生活经验和已有的知识点出发,联系生活讲数学,把生活经验数学化,数学问题生活化。激发学生学习数学的兴趣,让学生深刻体会到生活离不开数学,数学是解决生活问题的钥匙,从而增强学习数学的趣味性。
当我打开一年级的数学课本时,给我的印象好像一本童话书一样漂亮,每一课的内容,都有一个场景故事表现出来,把数学知识融入到了学生非常熟悉的生活中,与学生身边的生活联系较为密切。刚入学的一年级学生,大部分都受到学前教育,在生活中也学到一些与数学有关的生活知识,所以他们对数学并不是一无所知。
我在第一单元实际数学教学中,尝试如何将学生已有的生活经验引导学生学习认数,取得了较好的效果。 一、培养学生主动学习的愿望,让学生体会到身边有数学 数学教学中,要善于引导学生观察生活中的实际问题,感受数学与生活的密切联系。
在学习第一单元《快乐的校园》之前,我先带领学生熟悉美丽如画的校园和参与各种课内外活动,让学生体验感受学校生活的丰富多彩,从尔喜欢即将开始的校园生活。教授信息窗2《老鹰捉小鸡》这一课时,我把学生领到操场这个“大课堂”,实地做游戏组织教学活动。
通过学生非常熟悉喜爱的“老鹰捉小鸡”的游戏,来学习1—10数的认识。在游戏中让学生数一数“有几个小朋友参加游戏?”“男同学有几人?”“女同学有几人?”等等,在数扎长辫女孩“排第几”的过程中感知数的另一个含义——“序数”。
整节课,学生们“玩”的很开心,“大课堂”气氛很活跃,改变了以往枯燥乏味的被动式课堂,每一位学生都积极主动的参与到游戏学习中去,“学习”热情很高。学生在不知不觉中圆满完成了整节课的学习任务。
这样的数学课堂,让学生深切体会到原来数学就在自己身边,身边就有数学,而且离得很近,使学生对数学逐渐产生亲切感,从而培养学生主动学习的愿望。 二、发现生活中的数学问题,借助生活经验,学会探索解决数学问题 学生的学前数学知识,生活中的数学常识,经验的建立,是依赖于实际生活实践,是学生看得见,摸得着,听的到的现实。
生活中的数学问题具有形象性和启发性,它能唤醒学生已有的生活经验增强学习动机和信心,有助于引导学生进入数学情境,也有利于学生思维发展。教师要善于挖掘数学内容中的生活画面,让数学贴近生活,在组织学生活动中,引导学生讨论解决数学问题:我在信息窗1《科技小组活动》的教学中,学生在解决红点标示的问题“天上有几架飞机?”时,引导学生去看一看数一数,让学生充分利用情境图中的信息体会1-10各数的意义,再联系生活,广泛选取学生身边生活中非常熟悉的问题,进一步体会数的意义。
如“我们的教室有几扇窗?几盏灯?教室门前有几棵树?”“你家里有几口人?你有几只铅笔……”等等。在教学中我注意选择学生身边的感兴趣的事物,提出数学问题,为学生在生活中寻找探索新知识的依托,使学生学会借助生活经验思考探索问题。
三、有意识创设活跃的学习氛围和生动有趣的学习情境 “好玩”是孩子的天性,托尔斯泰说过:“成功的教学所需要的不是强制,而是激发学生的学习兴趣。”兴趣是人对客观事物产生的一种积极的认知倾向。
怎样才能让孩子在玩中获得知识呢?我针对每课不同的学习内容,安排了很多不同的游戏、故事……在第一单元《快乐的校园-10以内数的认识》中,我带学生到操场上做他们非常熟悉、喜欢的“拔河、老鹰捉小鸡、小小运动会”等等 ,让他们边玩边数数 “拔河比赛,左边有几个小朋友?右边呢?运动会上,6号运动员排在第几?第1名是几号运动员?等等……”使学生在活跃的学习氛围和有趣、喜爱的“玩”中学会了1-10各数的认识。 四、培养孩子数学的生活实践能力 许多孩子在上学前,就会做100以内的加减,数100以内的数甚至更多,但是如果把它们拿到具体的生活中就不是那么尽如人意,一般5岁以后数学的思维能力才开始蒙发,上一年级的学生部分只能机械的数数,但对数的意义就不一定清楚,因此,就要加强数学与生活的联系,让学生在自己的身边熟悉的环境中寻找数。
如3个人,1枝铅笔,5朵花等等,在生活中慢慢建立数的概念,认识数的含义。使学生在生活实践中得到锻炼,把数学真正融入现实生活中更好的为生活服务,同时用生活经验更好的为数学学习服务打好了结实的基础。
总之,数学教学让学生的生活经验走进数学课堂,为学生提供了亲身体验和动手操作的机会,指导学生更好的学习数学。在这方面,我受益良多,通过上学期的教学实践活动,我们班的学生学习数学的兴趣非常浓厚,改变了以往数学学习的枯燥乏味,学生在思想上有了从“要我学”-----到“我要学和我喜欢学”质的飞跃,学生变的喜欢学习数学。
我的教学工作也变很顺利,学生中没有了见了数学就头疼的“老大难”,工作效率有了很大的提高,学生的学习成绩有明显的进步。新《课标》也给我们明确提出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、操。
5.求一篇2000字以上的数学小论文(初一的)
数学小论文 最近,我从一个简单的算式中发现了两个新公式,这使我非常高兴。
下面,我就讲一下它的思考过程: 现在,有这么一个算式:1+3+5+7=?这么简单的题目,我想一年级的小朋友都能有死办法做出来,那么请看这组算式:1+3=4=22、1+3+5=9=32、1+3+5+7=16=42…这些算式的和都是一个数的平方,并且这些和的平方根就是这个算式的项数,所以,我得出一个结论:一组差为2的奇数等差数列的和就等于项数*项数。那么,求项数有没有更简单的方法呢?有!再来看一下求和算式:1+3+5+7= (1+7)*4÷2=8*4÷2=16,如果把它的第三步转为简便方法的话,就是:8÷2*4=4*4=42=16,也就是说(1+7)÷2就等于项数,因此得出:在一组差为2的奇数等差数列中,项数=(首项+末项)÷2。
这些就是我对这些公式的思考过程,听起来不是很难吧!本来嘛,发现,就在我们身边。 抓住数的整除特征 [问题]用1、2、3、4、6、7、8、9这样的8个数组成一个多位数,使这个多位数能被1、2、3、4、6、7、8、9中的每一个数整除;其中每一个数字至少使用一次,可以重复使用(如6478319232)。
请问:组成的多位数最小是多少? [思路点睛]首先我们要想到能被一些数整除的特征,能被2整除就要是偶数,被3、9整除的各个位上之和要是它们的倍数,能被4整除的数末两位上就是4的倍数,能被8整除的末三位上要是8的倍数。把这8个数加起来,得40,但能被9、3整除至少要是45,也就要加5,5不出现在这些数中,我们就选择重复使用1和4。
要最少的话就可以确定前几位要从小到大,我们取112344□□□□。我们再考虑能被4、8整除,那末两位只能是68,那末四位就有两种可能:7968、9768,已知划线部分都能被8整除,接着,我们只要看能不能被7整除,最后确定1123449768是这样的多位数中最小的,不信你们试试?。
6.数学小论文,2000字以上 急
精彩回答检举| 2011-05-27 22:24数学是研究数量、结构、变化以及空间模型等概念的一门学科。
透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。
虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。数学史 基础数学的知识与运用是个人与团体生活中不可或缺的一部分。
其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。
今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。
数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。
创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。
布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。数学分类 符号、语言与严谨 在现代的符号中,简单的表示式可能描绘出复杂的概念。
此一图像即是由一简单方程所产生的。 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。
在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。
它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。
数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。
亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。
但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。
严谨是数学证明中很重要且基本的一部分。数学家希望他们的定理以系统化的推理依着公理被推论下去。
这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。
牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。
当大量的计量难以被验证时,其证明亦很难说是有效地严谨。中国古代数学的发展 魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。
吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。
在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。 刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。
他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为 157/50和 3927/1250。
刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。
东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。
他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖暅原理;提出二次与三次。
7.一篇初一上册的数学小论文 2000字以上的 急求
今天,我们来介绍一下数学家的故事与名言第一位是高扬芝(1906-1978 ),江西南昌人,从小学习勤奋,特别喜欢数学。
高中毕业后考入北京大学数学系,由于学习成绩优秀,1930年大学毕业后应聘到上海大同大学担任数学教员,后成为教授、数学系主任。在课堂教学中,她遵循《学记》中所说的:“善歌者使人继其声,善教者使人继其志。”
所以,高扬芝的数学教学一贯是兢兢业业、讲求实效,深受学生欢迎。 高扬芝长期从事数学分析(旧时叫高等微积分)、高等代数和复变函数等课程的教学与研究。
她深知,高等数学比初等数学更加抽象,外行人常常把它看成是由冷酷的定义、定理、法则统治着的王国。因此,高教授常常告诉学生,数学结构严谨,证明简洁,蕴含着数学的美。
它像一座迷宫,只要你潜心学习、研究,就能寻求到走出迷宫的正确道路。一旦顺利走出迷宫,成功的愉悦会使你兴奋不已,你会向新的、更复杂的迷宫挑战,这就是数学的魅力。
她在上海大同大学工作不到五年的时间里,自身潜在的科研天赋很快被唤醒催发。经过刻苦钻研教材,结合教学实践,她撰写出论文《Clebsch氏级数改正》,1935年在交通大学主编的《科学通讯》上连载,得到同行好评。
解放后,她又著有《极限浅说》《行列式》等科普读物多部。 高扬芝是中国数学会创始时的少数女性前辈之一。
1935年7月25日中国数学会在上海交通大学图书馆举行成立大会,共有33人出席,高扬芝就是其中的一位。在这次年会上,她被推选为中国数学会评议会评议,后连任第二、三届评议会评议。
1951年8月,中国数学会在北京大学召开了规模空前的第一次全国代表大会,高扬芝出席了大会。她是这次到会代表63人中惟一的女代表。
20世纪60年代,她被选为江苏省数学会副理事长。 一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志。
看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生?”周围的人摇摇头,“他是在哪个大学教书的?”人们面面相觑。最后还是一位江苏籍的教员想了好一会儿,才慢吞吞地说:“我弟弟有个同乡叫华罗庚,他哪里教过什么大学啊!他只念过初中,听说是在金坛中学当事务员。”
熊庆来惊奇不已,一个初中毕业的人,能写出这样高深的数学论文,必是奇才。他当即做出决定,将华罗庚请到清华大学来。
从此,华罗庚就成为清华大学数学系助理员。在这里,他如鱼得水,每天都游弋在数学的海洋里,只给自己留下五、六个小时的睡眠时间。
说起来让人很难相信,华罗庚甚至养成了熄灯之后,也能看书的习惯。他当然没有什么特异功能,只是头脑中一种逻辑思维活动。
他在灯下拿来一本书,看着题目思考一会儿,然后熄灯躺在床上,闭目静思,开始在头脑中做题。碰到难处,再翻身下床,打开书看一会儿。
就这样,一本需要十天半个月才能看完的书,他一夜两夜就看完了。华罗庚被人们看成是不寻常的助理员。
第二年,他的论文开始在国外著名的数学杂志陆续发表。清华大学破了先例,决定把只有初中学历的华罗庚提升为助教。
几年之后,华罗庚被保送到英国剑桥大学留学。可是他不愿读博士学位,只求做个访问学者。
因为做访问学者可以冲破束缚,同时攻读七、八门学科。他说:“我到英国,是为了求学问,不是为了得学位的。”
华罗庚没有拿到博士学位。在剑桥的两年内,他写了 20 篇论文。
论水平,每一篇都可以拿到一个博士学位。其中一篇“塔内问题”的研究,他提出的理论被数学界命名为“华氏定理”。
华罗庚以一种热爱科学,勤奋学习,不求名利的精神,献身于他所热爱的数学研究事业。他抛弃了世人所追求的金钱、名利、地位。
最终,他的事业成功了。 华罗庚把科学研究与实际应用紧密结合起来。
华罗庚把数学应用到工农业生产上,对我国现代化建设做出了突出的贡献 在这里还介绍一些名言:数统治着宇宙。 ——毕达哥拉斯数学,科学的女皇;数论,数学的女皇。
——C•F•高斯上帝创造了整数,所有其余的数都是人造的。 ——L•克隆内克上帝是一位算术家 ——雅克比一个没有几分诗人气的数学家永远成不了一个完全的数学家。
——维尔斯特拉斯纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。——怀德海可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。
——麦克斯韦数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。——史密斯无限!再也没有其他问题如此深刻地打动过人类的心灵。
——D•希尔伯特发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。——C•G•达尔文宇宙的伟大建筑是现在开始以纯数学家的面目出现了。
——J•H•京斯这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。——A•N•怀德海给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。
——A•L•柯西纯数学是魔术家真正的魔杖。——诺瓦列斯如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。
——柏拉。
8.问一下各位高手,求一篇初中数学方法的小论文(2000~3000字)
"数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。
要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。 数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。
一、数学的特点(一) 数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。
在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。
比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。
它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。
至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。
高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。
为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。
学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。
数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。
例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。
再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。
分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。
数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。
在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。
中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没。
9.数学小论文(500~2000字)
数学小论文一 “0” 0,可以说是人类最早接触的数了。
我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。
我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。
2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”
这是小学至中学老师仍在说的一句0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。
后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。
203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”
我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花。
10.数学小论文2000字中学生的
数学小论文 “0” 0,可以说是人类最早接触的数了。
我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。
我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。
2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”
这是小学至中学老师仍在说的一句0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。
后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。
203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”
我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。