数学课《倒数的认识》教学设计(最新7篇)

0 2023-12-25 19:15 Mr.xuan 手机版

作为一名老师,往往需要进行教学设计编写工作,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。我们应该怎么写教学设计呢?下面宣传员为大家整理了7篇数学课《倒数的认识》教学设计,希望可以帮助您更好的写作倒数的认识教学设计。

倒数的认识教学设计 篇一

数学课《倒数的认识》教学设计

学情分析:

本班级学生在学习本课时内容时,已经学会了分数乘法的计算,在具备分数乘法计算能力的基础上进行学习《倒数的认识》,我相信本班级学生能顺利地完成这一课时内容的学习,且学会这一课时也将为以后学习分数除法打下坚实的基础。

教学目标:

1、理解倒数的意义,掌握求倒数的方法,并能正确、熟练地求出一个数的倒数。

2、在充分的观察、思考、分析、讨论活动中,培养学生的思维能力和灵活解决问题的能力。

3、通过本节课的学习,激发学生学习数学的兴趣,让学生体验成功的快乐。

教学重难点:

重点:倒数的意义与求法。

难点:1、0的倒数,整数、小数、带分数的倒数的求法。

教具准备:课件(或练习张贴纸)

教学过程:

一、揭示倒数的意义

同学们,我们已经学会了分数乘法的计算。这节课我们将运用分数乘法的知识去解决新的问题,大家有信心学好吗?请看大屏幕。课件依次展示(一).(二):

(一)同学们认识以下各组汉字吗?请仔细观察每组汉字,你有何发现?

吴——吞杏——呆干——士

(二)仔细观察下列各组算式,再进行计算。

(三)计算过后,你们发现了什么?

(四)指出今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?

答后组织学生进行一场写乘积是1的任意两个数的算式的比赛。(限时1分钟)

(五)学生汇报,教师有选择地进行板书。

对学生的学习成果加以肯定表扬。进而追问:

1,如果给你们充足的时间,你们还能写出多少个这样的乘法算式?(指名让学生回答)

2,那么你们是根据什么条件写出这么多的算式呢?(思考后指名让学生回答并集体交流订正。)

(六)揭示倒数的意义:刚才同学们所写的两个数的乘积都是1。像这样乘积是1的两个数,我们把它们称之为互为倒数。

板书:乘积是1的两个数叫做互为倒数。(生齐读,师让生划出关键词进行交流熟记。)

(七)举例说明倒数的意义。

1,黑板上所写的两个数的乘积都是1,所以它们互为倒数。比如和乘积是1,我们就说和互为倒数,或的倒数是、是的倒数。

板出:和互为倒数的倒数是是的倒数

2,为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?(思考后指名学生回答)

3,指出倒数是表示两个数之间的关系,它们是相互依存的,所以必须说一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?(预设:约数和倍数。)

4,举例引导学生认识今天学习的倒数与约数、倍数一样都是表示两个数之间的关系,必须是相互依存,而不能独立地存在。5和的积是1,我们就说……(生说)× =1,这两个数的关系可以怎么说?(生说)

5,同学们都学得不错,现在老师要考考大家是不是真正理解了倒数的意义。

(八)课件出示测试题。

1、判断

1.得数是1的两个数叫做互为倒数。 ()

2.因为10× =1,所以10是倒数,是倒数。 ()

3.因为+ =1,所以是的倒数。 ()

2、口答练习。

1×()=1 ×()=1×()=1 ×()=1

下面哪两个数互为倒数。(连线)注:以下为例7学习内容。

二、探索求一个数的倒数的方法。

(一)引导观察,发现特征:

1,我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起观察一下刚才的这些例子,看有何发现?(观察后指名学生回答)

2、指出分子和分母调换了位置,相乘时分子和分母就可以完全约分,得到乘积是1。

3、根据这一特点你能写出一个数的倒数吗?

4、试一试:写出、的倒数。(完后指名板演,集体交流订正)

5、引导小结:求一个数的倒数的方法,只要把分数分子分母调换位置。

(二)思考讨论,延伸运用:1,除了真假分数外,其它数的倒数你们能写出来吗?

2,课件出示讨论题:

(1)18的`倒数是什么?1的倒数是什么?0的倒数呢?

(2)的倒数是什么?

(3)0.2的倒数是什么?

3,练习:写出下列各数的倒数:

8 37 0.3 1.2

4,我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。(生思后指名说)。

5,引导总结:求一个分数的倒数,只要把分子分母调换位置。如果是求一个带分数的倒数时要先化成假分数;求一个小数的倒数时要先化成分数(最简分数);求一个整数(0除外)的倒数时,可以把这个整数看成分母是1的分数;然后再调换分子分母的位置。(让生齐读)

三、练习巩固,加深认识。

1、请打开课本P50阅看,把你认为重要的划起来读一读。

2、完成“练一练”。

写出下面各数的倒数。

8

(1)完后问学生的倒数可以这样写吗?= 。(预设:1除外互为倒数的两个数是不会相等的。)

(2)师:我们在书写时要写清谁是谁的倒数,或谁的倒数是谁。

3、先说说下面每组数的倒数,再看看你能发现什么?

(1)的倒数是();的倒数是();的倒数是();

(2)的倒数是();的倒数是();的倒数是();

(3)的倒数是();的倒数是();的倒数是();

(4)3的倒数是();9的倒数是();14的倒数是();

4、填空。

7×()= ×()=()× =0.17×()=1

5、独立完成课本P51练习十第1-6题,师巡视。完后师问生答进行对照,共同订正。

四、课堂总结:今天我们学会了什么知识?还有不理解的地方吗?

五、布置作业:练习十第2、3题。

倒数的认识教案设计 篇二

教学目标:

1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

2、培养学生的数学思维。

教学重点:

理解倒数的意义,求一个数的倒数。

教学难点:

从本质上理解倒数的意义。

教学过程:

一、呈现数据,先计算,再观察发现。

1、出示:3/8×8/37/15×15/7 5×1/5 0。25×4

2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)

二、交流思辨,抽象概念。

1、汇报。乘积都是1。

2、你能根据上面的观察写出乘积是1的另一个数吗?

3/4×( )=1 ( )×9/7=1

说说你是怎样写得,有什么窍门?

你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数)

你是怎样想的?如0。5、1。7

3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

4、让学生说说上面的数(用两种说法)。

5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

学生讨论:分数的分子分母调了一下位置;

师:那么5×1/5 0。2×5乘积也是1哟!怎么?把整数和小数也化成分数。

6、沟通:分子分母倒一下跟乘积是1有联系吗?

7、现在你对倒数有了怎样的认识?

三、求一个数的倒数。

1、找一个数的倒数。

5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。

你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)

2、会找了吗?你能找到下列数的倒数吗?

3/5 4/9 6 7/2 1 1。25 1。2 0学生独立完成,然后交流。

(1)先说说你找到的这个数的倒数的,你是怎样找的?

(2)在找这些数的倒数中,你有什么想说的?

3、现在你对倒数有了什么新的认识?(0没有倒数,其他的数都有,1的倒数就是1。)

四、巩固深化。

1、做一做,写出下面各数的倒数,并说说你是怎样想的。

2、同桌互说倒数,你说一个数,让同桌说他的倒数。汇报几组。

3、判断题。书上第25页的第3题。

补充:(3)2/5×5/2=1,那么2/5是倒数。

(4)任何一个数都有倒数。

(5)如果一个数是A(0除外),那么这个数的倒数就是1÷A。 重点讨论:一个数的倒数一定比这个数小。

那么哪些数的倒数比原数小、大或相等。

4、完成作业:作业本第12页的1、2、3题。

五、课堂小结。今天这节课我们认识了倒数,你对倒数有什么认识?

倒数的认识教学设计 篇三

教学内容:

新人教版六年级数学上册第28页的例1。

教学目标:

1、通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。

2、学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。

3、在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。

教学重点:

理解倒数的意义,学会求倒数的方法。

教学难点:

熟练正确的求小数、带分数的倒数,发现倒数的一些特征。

教学准备:

多媒体课件。

教学过程:

一、猜字游戏导入,揭示课题。

上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。

如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8 /3)。

师:谁还能说出这样的数?(课件出示)

象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)

二、出示学习目标:

1、理解倒数的意义。

2、掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。

三、自主探究新知

(一)探究讨论,理解倒数的意义。

1、(课件出示教材第24页例1的四个算式。)

开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)

生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

2、出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。

3、你是怎样理解互为倒数的呢?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)能举例吗?

(二)深化理解。

1、乘积是1的两个数存在着怎样的倒数关系呢?

举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)

2、互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)

3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

又因为0与任何数相乘都不等于1,所以0没有倒数。)

(三)运用概念。

1、讨论求一个数的倒数的方法。

出示例2:写出其中3/5 、7/2两个分数的倒数。学生试做讨论后,教师将过程板书如下:3/5的分子分母调换位置---5/3 7/2的`分子分母调换位置---2/7

所以3/5的倒数是5/3,7/2的倒数是2/7 。(能不能写成3/5=5/3,为什么?)

小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

2、怎样求小数和带分数的倒数呢?(课件演示,学生观察。)

师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。

3、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

四、堂堂清作业

(一)填一填。(出示课件)

1、乘积是()的()个数()倒数。

2、a和b互为倒数,那a的倒数是(),b的倒数是()。

3、只有当假分数为()时,它与它的倒数相等;而()是没有倒数。

4、一个真分数的倒数一定是()。

(二)判断题。(演示课件)

1、5/3是倒数。()

2、因为3/4×4/3=,所以4/3是倒数。()

3、真分数的倒数大于1,假分数的倒数小于1。()

4、因为1/4+3/4=1,所以1/4和/4互为倒数。()

(三)说一说。(课本第29页的第3题)

五、课堂小结:

今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:

倒数的认识

乘积是1的两个数互为倒数。 0没有倒数,1的倒数是它本身。例2:写出其中2/5 、7/2两个分数的倒数。

2/5的分子分母调换位置---5/2 7/2的分子分母调换位置---2/7 6的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。

求小数的倒数的先把小数化成分数,再把分子和分母调换位置。

倒数的认识教学设计 篇四

教学目标

1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

3.培养学生的观察能力和概括能力。

教学重点和难点

1.正确理解倒数的意义及互为的含义。

2.正确地求出一个数的倒数。

教学过程设计

(一)激发兴趣,引出概念

1.投影。哪个同学和老师比赛?谁说得快?

师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)

2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。

板书:乘积是1 两个数

3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?

生:两个数分子、分母颠倒位置就可以了。

师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)

4.举例说明,什么叫互为倒数?

师:3是倒数这句话对吗?为什么?

你们说得对,谁能说出几组倒数?

同桌互相说,每人说两组。(指名说)

问:怎样判断他们说得是否正确?

生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于

倒数的认识教案设计 篇五

教学目标:

(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟 练的求出倒数。

(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学 生的自主学习能力,提高学生观察、比较、抽象、归纳以及合 作学习的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:

倒数的意义与求法。

教学难点:

1、0的倒数,小数、带分数倒数的求法。

教学用具:

媒体展示台

教学过程:

一、竞赛激趣,揭示课题。

1、谈话:

师:同学们,你们喜欢比赛吗?现在我们进行小组间比赛。

(说明比赛事项)比赛内容:写两个数的乘法算式,要求:乘积等于1;比赛时间:30秒;比赛规则:每人每次写一式,写完后传给小组内其它同学。比赛结果评定:比较数量与正确率(重复计一次)。(写在白纸上)

2、学生开始紧张激烈比赛,教师组织评议,评选出优胜小组。

师:短短30秒你们就写出了这么多算式,本领真大,由此也反映出数学课堂里“时间就是效率”的真谛,我们从小要养成珍惜时间习惯。

追问:如果老师再给你们一些时间,你们还能写吗?能写多少个?

生:可以。能写无数个。(板书:无数)

4、说明:其实我们的祖先早就已经研究过这方面的问题,这就是今天要学习的倒数。(板书课题)今天这堂课我们就来学习倒数的知识。

[以学生喜爱的竞赛拉开一堂课的序幕,充分调动学生学习的主动性与积极性;借助30秒的竞赛时间教育学生要珍惜时间,让德育教育的内容渗透在数学课;通过追问让学生初步感知倒数有无数组,同时竞赛的内容为倒数意义的揭示打下伏笔。]

二、引导质疑,自主探究。

1、引导质疑。

师:看着“倒数”这个数学新名词,你的脑子里产生哪些问题?

生:什么是倒数? 生:倒数是指一个数吗?

生:倒数应该怎样表述? 生:怎样求倒数?

生:倒数是不是一定是分数? 生:倒数有什么用?

生:是不是每个数都有倒数? ...........

2、自主探究。

(1)、明确学习方法。

师:今天我们采用自学加小组讨论的方法学习倒数的有关知识。同学们围绕刚才我们提出的这些问题先自学课本,然后小组讨论,解决问题。

(2)、学生自学讨论,教师指导。

(3)、组织全班交流。

你现在知道什么是倒数了吗?

怎样求一个数的倒数?

3、质疑:在自学的过程中你们还有什么疑惑的地方吗?

[“以学定教”是教学设计的指导,学生是学习的主人,教师是学生学习活动的组织者、引导者,协作者。在学生的学习过程中:问题应由学生提出,方法应由学生寻找,规律应由学生发现、总结。本环节通过学生“质疑-自学-合作讨论-交流”的流程提高学生发现问题、解决问题的能力以及合作学习的能力。]

三、巩固提高,拓展外延。

师:现在老师要来检查一下同学今天自学的效率怎么样?对自己有信心吗?

(1)、说出下列各数的倒数,说说你是怎么想的?

8、1、0.....

(组织讨论:1的倒数是1,0没有倒数。你能用已有的知识来给大家解释吗?)

(2)、课本练习题:第4题。

(3)、判断:

a、9的倒数是 。

b、任何真分数的倒数都是假分数。

c、任何假分数的倒数都是真分数。

d、是倒数。

e、1的倒数是1,0的倒数是0。

(4)、开放题:

×( )=( )× = ×( )=6×( )

你会填吗?你能用今天学到的知识来填吗?

[倒数是两个数之间的一种关系,学习它主要是为今后学习分数除法服务,以上设计一方面是巩固学生对倒数概念的掌握,另一方面又是让学生在旧知里建构新知,应用新知,从而进一步感悟到知识的内在联系。]

四、总结反思,发展能力。

师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?

生:提问-自学讨论-练习

师:你能用“我学会了--”来描述今天学到的知识吗?

生:.......

[通过引导学生反思学习方法,让学生清楚地意识到自学讨论的作用。用“我学会了。”来描述学到的知识,一方面是培养学生经常总结自己学习的习惯,另一方面提高学生的语言表达能力。]

本教学设计的特点:

1、构建“自主-合作探究”的自主学习模式。

新课程强调教学过程是师生交往、共同发展的互动过程;在教学过程中要注重培养学生的独立性与自主性,引导学生质疑、探究,使学习成为在教师指导下主动的、富有个性的过程。本设计中的教学过程是围绕学生“质疑-自学-讨论-交流”活动展开:问题由学生提出,答案由学生找出,评价由学生判定。

2、“以学定教”重新定位教师与学生角色。

新课程强调:学生是数学学习的主人,教师是学生数学学习活动的指导者、参与者、合作者。本教学设计的整个学习活动,充分体现了这一点,教师在引导学生对未知领域进行质疑基础上,与学生一起自主学习、合作探究。让学生通过自主合作的学习活动,在质疑与释疑中建构着自己的数学知识,发展着自己的数学素养。

3、注意学科间的整合。

数学是一门比较抽象的、理性占主导的学科。最优化的数学学习不仅要完成本门学科特定的任务,还应巧妙整合完成其它学科的任务。在本教学设计中,最后我让学生反思学习的方法,用“我学会了--”来总结自己的学习后的收获,这是整合语文学科对学生的语言表达能力训练。

倒数的认识教学设计 篇六

一、创设情境、导入新课。

1、课件出示:吞---吴干---士杏---呆。

2、请同桌互相交流一下,找一找下面文字的构成有什么规律吗?

3、学生汇报。

4、同学们观察的非常仔细,这种现象在数学中也有,今天这堂课我们就来研究倒数的知识。(板书课题:倒数的认识)

二、出示学习目标

1、能够理解和掌握倒数的意义。

2、学习求一个数的倒数的方法,能正确地求出一个数的倒数。

三、探究新知识

1、课件出示例1的算式,开展小组活动:算一算,找一找,这组算式有什么特点?

2、小组汇报交流。(通过计算,发现每组两个数的乘积都是1,还发现了相乘的两个分数的分子和分母的位置是颠倒的)

3、同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,也发现了每组两个数的乘积都是1,我们现在就可以得出倒数的定义了:乘积是1的两个数互为倒数。(板书)

4、提问“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。

5、强调“两个数”“乘积是1”

6、出示0.4×2.5=1,让学生说一说0.4和2.5可不可以说互为倒数。

7、随堂练习:判断:(1)得数是1的两个数叫做互为倒数。(2)因为10×1/10=1,所以10是倒数,1/10是倒数。(3)因为1/4+3/4=1,所以1/4是3/4的倒数。

8、出示例题2,找一找哪两个数互为倒数?再说一说你是怎么找的`?

9、以小组为单位进行讨论交流。

10、分组汇报:

第一种方法:看两个分数的乘积是不是1。

第二种方法:看两个分数的分子与分母是否分别颠倒了位置。

哪一种方法比较快?

11、观察书中的找倒数的方法,强调:3/5的倒数是5/3,不能用等号相连。

我们刚才知道了真分数、假分数和整数找倒数的方法:还有一些数找倒数的方法我们没有归纳。请同学们想一想下面的数怎么找倒数?

1、真分数、假分数。

2、整数

3、小数

4、带分数(板书)

12、例2中还有哪些数没有找到倒数?

13、提问:1和0有没有倒数?如果有,是多少?(小组讨论、汇报。)

四、巩固练习

我们现在应用今天学习的知识解决一些问题。

五、课堂总结。

板书设计成知识树。

倒数的认识教学设计 篇七

教学目标

1。通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

2。使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

3。通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

教学重难点 :

理解倒数的意义,学会求倒数的方法。

教学难点:

发现倒数的一些特征。

教具准备

课件

设计意图

通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的'方法。

一、猜字游戏引入新课

找找下面文字的构成规律

呆———杏 土———干 吞———吴

按照上面的规律填数

——( ) ——( ) ——( )

能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

二、新知探究

(一)探究讨论,理解倒数的意义。

1.课件出示算式。

开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。

我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

2.出示倒数的意义:乘积是1的两个数互为倒数。

3.你是怎样理解互为倒数的呢? 能举例吗?

(二)深化理解。

1.乘积是1的两个数存在着怎样的倒数关系呢?

2.互为倒数的两个数有什么特点?

3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

因为1×1=1,根据“乘积是1的两个数互为倒数”,所 以1的倒数是1。

又因为0与任何数相乘都不等于1,所以0没有倒数。)

(三)运用概念。

1.讨论求一个数的倒数的方法。

出示例2:写出其中3/5 、7/2 两个分数的倒数。

学生试做讨论后,教师讲过程 。

小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

2。怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

三、巩固练习

(一)完成教材第28页的“做一做”

(二)完成教材第29页练习六的第1—5题。

四、课堂小结

今天我们学习了有关倒数的哪些新知识?

海纳百川,有容乃大。以上7篇数学课《倒数的认识》教学设计就是宣传员小编为您分享的倒数的认识教学设计的范文模板,感谢您的查阅。