在教学工作者实际的教学活动中,编写教学设计是必不可少的,借助教学设计可以让教学工作更加有效地进行。教学设计应该怎么写呢?以下这5篇数学《长方体和正方体的表面积》的教学设计是来自于宣传员的人教版长方体和正方体的表面积教学设计的范文范本,欢迎参考阅读。
数学《长方体和正方体的表面积》的教学设计 篇一
教学目标:
结合具体情境,经历自主探索长方体、正方体表面积计算方法的过程。
知道表面积的概念,掌握长方体、正方体表面积的计算方法,会计算长方体、正方体的表面积。
3、在自主解决现实问题的活动中,获得成功的体验,增强学习数学的信心。
教学重点
1、长方体、正方体表面积的意义和计算方法。
2、确定长方体每一个面的长和宽。
教学难点
1、长方体、正方体表面积的意义和计算方法。
2、确定长方体每一个面的长和宽。
教学媒体
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
学具:长方体、正方体纸盒、剪刀。
教学过程
一、复习准备。
(一)口答填空。
1.长方体有( )个面,一般都是( ),相对的面的( )相等;
2.正方体有( )个面,它们都是( ),正方形各面的( )相等;
3.这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;
4.这是一个( ),它的棱长是( )厘米,它的棱长之和是( )厘米。
(二)说一说长方体和正方体的区别?
教师:我们已经掌握了长方体和正方体的特征,它们的`表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积)
二、学习新课。
(一)长方体和正方体表面积的意义。
1.教师提问:什么叫做面积?
长方体有几个面?正方体有几个面?
(用手按前、后,上、下,左、右的顺序摸一遍)
2.教师明确:这六个面的总面积叫做它的表面积。
3.学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积。
4.教师板书:长方体或正方体6个面的总面积,叫做它的表面积。
(二)长方体表面积的计算方法
1.学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;
前后两个面大小相等,它是由长方体的长和高作为长和宽的;
左右两个面大小相等,它是由长方体的高和宽作为长和宽的。
2.教师提问:想一想,长方体的表面积如何计算?(学生讨论)
老师板书:
上下面:长×宽×2
前后面:长×高×2
左右面:高×宽×2
3.练习解答。
做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
数学《长方体和正方体的表面积》的教学设计 篇二
【教学内容】西师版第十册第39页例1。
【教学目标】1结合具体情境,探索并掌握长方体和正方体的表面积的计算方法,从中获得解决问题的方法和成功的体验。
2培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
3让学生感受知识的形成过程,从而激发学生学习数学的兴趣。
4让学生体会所学知识在实际中的应用价值。
【教学重点】
长方体、正方体表面积的计算方法。
【教学难点】
确定长方体每一个面的长和宽。
【教具学具】
教具:长方体、正方体纸盒(可展开)。
学具:长方体、正方体纸盒、剪刀。
【教学过程】
一、复习引入
师:前面我们学习了长方体、正方体的表面积,谁来说说什么是它们的表面积?
出示一个长方体,指名摸它的表面。
师:我们已经掌握了长方体和正方体面的特征,也会计算每个面的面积,今天就运用这些知识来计算它们的表面积。
二、探究学习
1探索长方体表面积的计算方法
出示例1:制作下面这样一个长方体的纸盒,至少需要用多少平方厘米的纸板?师:请大家想一想,这道题实际上是求什么呢?你打算怎样解决这个问题呢?
4人小组合作完成这个长方体表面积的计算。
汇报交流计算情况,教师总结学生的不同算法,点拨得出长方体的表面积的计算方法。
生1:我们组是这样算的:8×4×2+4×5×2+8×5×2=184cm2前后面左右面上下面
师:你能把这种求表面积的方法归纳一下吗?
生:长×宽×2+长×高×2+宽×高×2。
生2:我们组是把6个面的面积分别算出来后再相加。
生3:我们组是先算“前面+左面+上面”的面积,再乘2就可以了。即:(8×4+4×5+8×5)×2=184cm2。
师:为什么求出这3个面的面积和,再乘2就可以了?
生:长方体6个面可以分为3组,相对的面相等,只要算出这个长方体盒子的一半,再乘2就可以了。
师:你能把这种求表面积的方法归纳一下吗?
生:(长×宽+长×高+宽×高)×2。(师板书)
师:观察真仔细,归纳能力真强。
师:在这些方法中你认为哪些比较简便?把你喜欢的方法给同桌交流交流吧。
2探索正方体表面积的。计算方法
师:通过大家的积极思考,我们学会了计算长方体的表面积。想一想,正方体的表面积又怎样算呢?
出示一个正方体,让学生自主探索方法。
汇报交流。
生1:我是把6个面的面积加起来。
生2:我是用(长×宽+长×高+宽×高)×2的计算方法来做的。
生3:我觉得只要求出一个面的面积再乘6就可以了。
师:能给大家讲讲你的想法吗?
生:正方体6个面的面积都是相同的。
师:你能把这种求表面积的方法归纳一下吗?
生:正方体的表面积=棱长×棱长×6。(师板书)
三、巩固练习
1练习十第2题。练习长方体和正方体表面积计算方法。让学生独立列式计算,然后集体评析。
2练习十第3题。先独立完成,再与同桌交流自己的算法。
四、课堂小结
通过这节课的讨论学习,你有什么收获和体会?
数学《长方体和正方体的表面积》的教学设计 篇三
教学目标
1、使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义,探索并掌握长方体和正方体表面积的计算方法。
2、使学生会运用表面积的意义,解决生活中的一些简单实际问题; 能根据实际情况计算长方体和正方体部分面的面积和,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
3、运用多媒体辅助教学,发展学生的空间观念,培养探究立体图形的兴趣。
教学重难点
重点:理解表面积的意义;探索长方体和正方体表面积的计算方法。
难点:根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。
教学准备
教师:多媒体课件,长方体纸盒。
学生:长方体纸盒
教学设计
一、复习铺垫
同学们,上节课我们认识了长方体和正方体,通过学习你知道了什么?
生答。(教师强调面的知识)
二、创设情境 、引入问题
老师对长方体和正方体也非常感兴趣,做了一个长方体的纸盒,制作这个纸盒至少需要用多大面积的纸板呢?要解决这个问题就是求什么?
生:长方体纸盒的表面积。
师板书课题:长方体和正方体的表面积
师:看了课题同学们想问什么?
师生共议研究课题:
(1)什么叫长方体和正方体的'表面积?
(2)怎样求长方体和正方体的表面积?
三、合作探究、学习新知
1. 探索长方体表面积的计算方法。
什么叫长方体的表面积呢?请看大屏幕。
多媒体出示长方体展开图。
师:同学们看完后有什么想说的?
生:围成长方体的是6个长方形。
生:长方体的表面积就是展开后6个面的总面积。
师归纳后板书:长方体或正方体6个面的总面积,叫做它的表面积。
师:我们知道了什么是表面积,那么制作这个纸盒至少需要多大面积的纸板这个问题该怎样解决呢?
多媒体出示长方体粘合图
师:同学们看完后,又想到了什么呢?
生:求出长方体6个面的面积,也就知道了做纸盒所需要的面积。
生:要知道做这个纸盒用多大面积的纸板就是求它的表面积。
〔着重引导学生体会: 求做这个长方体纸盒需要多少硬纸板,就是求长方体6个面的总面积。〕
多媒体出示长方体图形
师:现在同学们能求出它的表面积吗?
生:不能。
师:为什么?
生:没有数据。
师课件出示数据,引导学生把数据放到长方体相应的位置。
2.探究每个面的长和宽与长方体的长、宽、高有什么关系?
师:我们知道了长方体的长、宽、高,长方体每个面的长和宽又分别是长方体的什么条件呢?
多媒体展示,引导学生讨论:
上、下每个面的长和宽分别是长方体的()和();
前、后每个面的长和宽分别是长方体的()和(); 左、右每个面的长和宽分别是长方体的()和()。
小组讨论交流(学生汇报)得出长方体的长、宽、高与每个面长和宽的关系:
上、下每个面的长和宽分别是长方体的(长)和(宽);
前、后每个面的长和宽分别是长方体的(长)和(高); 左、右每个面的长和宽分别是长方体的(高)和(宽)。
3、尝试计算
问:现在你能求出做这纸盒至少需要多大面积的纸板吗?
学生尝试计算,出示活动要求:
(1) 小组讨论,想办法求出做这个纸盒需要多大面积的纸板。
(2) 把自己的计算方法和小组内的同学交流。
教师参与学生的活动。
反馈:哪个小组先上来,把你们的研究过程和结果向大家汇报一下?在一个小组汇报时,其他小组的同学要仔细地听,认真地想,如果有什么问题,可以向他们提问
学生板演后说明想法:
生1:我先用30x10求出上面的面积,因为上下面的面积相同,所以再乘2就是上下面的面积;用30x15求出前面的面积,再乘2就得出了前后两个面的面积;用15x10求出右面的面积,再乘2,就是左右两个面对面积,然后把6个面的面积加起来。
生2:我先求出上面、前面、左面3个面的面积,因为长方体相对的面完全相同,所以再乘2就求出6个面个的面积。
教师注意引导学生语言叙述的完整性,准确性。
师多媒体展示学生的汇报结论。
指两生把板书上的数字换成对应的长、宽、高,引导学生总结出:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。
多媒体出示:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。
4探究正方体的表面积计算方法。
多媒体出示:棱长为5厘米的正方体的表面积是多少?
学生尝试计算,指生汇报并说明想法,引导学生得出:正方体的表面积=棱长x棱长x6.
四,巩固新知、拓展运用
1、课件出示我会选,学生口答。同时在多媒体上出示答案。教师了解学生对新知识的掌握情况。
2、课件出示说一说,学生口答,同时在多媒体上出示答案。运用生活中的问题,让学生体会数学与生活的联系,提高学习兴趣。
3、课件出示聪明的你,引导学生注意:
(1)在处理长方体(正方体)实际应用时,要灵活运用表面积的计算方法,(不一定是6个面);
(2)计算时,关键是找准数据。
学生独立完成后,在班内汇报,鼓励学生运用多种方法解决问题。
4、课件出示攀登高峰,引导学生分析计算时应考虑几个面,问题课后讨论完成。
五、课堂小结
通过学习,你有哪些收获?还有那些不懂的问题?
数学《长方体和正方体的表面积》的教学设计 篇四
教学目标:
1、进一步巩固长方体和正方体的表面积的含义和计算方法,能根据所求问题的具体特点,选择计算方法,解决一些简单实际问题。
2、进一步发展学生的空间观念和空间想象能力。
3、密切数学与生活的联系,提高学生学习数学的学习兴趣。
教学重、难点:
能根据所求问题的具体特点,选择计算方法解决一些简单的实际问题。
教学准备:
多媒体课件,抽纸,长方体通风管模型。学生自备长方体和正方体的模型。
教学过程:
一、复习长方体和正方体的特征
师:长方体有什么特征?
(长方体有6个面,12条棱,8个顶点。长方体相对的两个面完全相同,相对的棱长度相等。)
正方体呢?
(正方体也有6个面,12条棱,8个顶点。正方体的6个面是完全相同的正方形,正方体的`12条棱长度相等。)
师最后根据学生的口答小结。
二、复习长方体和正方体的表面积的计算方法
1、复习长方体每个面的面积的计算方法。
提问:长方体上、下面的面积怎样计算?前、后面的面积怎样计算?左、右面的面积呢?
学生口答,课件及时反馈。
2、复习长方体和正方体表面积、底面积和侧面积的计算方法。
课件依次出示长方体和正方体,逐个提问。课件及时反馈。
3、求长方体和正方体的表面积(只列式不计算)。
第一个是长方体,6个面都是长方形;
第二个是长方体,有2个面是正方形,其余4个面是长方形;
第三个是正方体。
先分析已知条件和所求问题,再说说先求什么,再求什么,怎样列式。
三、复习长方体和正方体表面积的实际应用
1、长方体和正方体表面积的实际应用的基础练习。
(1)出示一组物体的图片。
师:请同学们想一想可能计算这些物体的什么,实际是求长方体哪几个面的面积?想好以后,与同座位的同学互相说一说。
(2)计算无盖的长方体玻璃鱼缸的玻璃面积。
先审题:要求玻璃面积,实际是求长方体哪几个面的面积?
再口答算式,并计算。
(3)计算火柴盒内盒和外盒的面积。
先独立思考,再集体交流。
根据学生口答板书:
火柴盒内盒面积(5个面的面积)=前、后两个面的面积+左、右两个面的面积+下面一个面的面积=6×1×2+4×1×2+6×4=44(平方分米)
火柴盒外盒面积(4个面的面积)=前、后两个面的面积+左、右两个面的面积=6×1×2+4×1×2=20(平方分米)
(4)选择题
(1)1、一个通风管的横截面是边长0、2米的正方形,长2、5米,如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?()
A、0、2×2、5×50
B、0、2×0、2×2、5×50
C、0、2×2、5×4×50
还可以怎样计算?
展示长方体通风管展开成一个长方形的过程,帮助学生思考。
还可以列式为:0、2×4×2、5×50
(2)一个长方体游泳池,长20米,宽10米,深2米。在这个游泳池四壁及底面贴上瓷砖,要贴多少平方米?()
A、20×10+(20×2+10×2)×2
B、20×10+20×2+10×2
C、(20×10+20×2+10×2)×2
(3)一个棱长3分米的正方体,在它的顶点处切下一个棱长1分米的小正方体,表面积和原来相比()。
A、减少了
B、不变
C、增加了
(4)一个正方体的棱长之和是24厘米,它的表面积是()平方厘米。
A、6B、48C、24
(5)如果长方体的长、宽、高都扩大3倍,那么它的表面积扩大()倍。
A、3B、6C、9
(6)把两个正方体拼成一个长方体,它的表面积减少()面的面积。
A、1B、2C、3
2、拓展练习。
(1)学校大门前有6级台阶,每级台阶长6米,宽0、4米,高0、2米。6级台阶一共占地多少平方米?给这些台阶上铺地砖,至少需要铺多少平方米地砖?
(2)设计包装纸。
a、把两包抽纸拼在一起有几种拼法?哪种最省包装材料?
b、把四包抽纸拼在一起有几种拼法?哪种最省包装材料?省多少平方厘米?
3、思考题。
下图表示用棱长1厘米的正方体摆成的物体。(书第18页)
(1)从上面、正面和左侧面看到的分别是什么形状?试着画一画。
(2)这个物体的表面积是多少平方厘米?
(3)在这个物体上添加同样大的正方体,补成一个大正方体。这个大正方体的表面积至少是多少平方厘米?
四、课堂作业
1、小区大门前有8级台阶,每级台阶长5米,宽0、4米,高0、2米。
(1)8级台阶一共占地多少平方米?
(2)给这些台阶上铺地砖,至少需要铺多少平方米地砖?
2、一间教室长8米,宽70分米,高40分米,现在要粉刷顶面和四面墙壁,门窗和黑板面积一共是30平方米。
(1)粉刷的面积是多少平方米?
(2)如果每平方米需工料费1、5元,粉刷工料费共需多少元?
数学《长方体和正方体的表面积》的教学设计 篇五
教学目标:
1.知识技能:
(1)掌握长方体和正方体表面积的基本计算方法。
(2)能够根据给出的长方体的长宽高,确定与所求面对应的棱。
(3)通过练习学会灵活地解决一些实际问题。
2.过程与方法:通过独立完成、小组学习等多种形式进行有效的练习。
3.情感、态度与价值观:结合练习培养分析、解决问题的能力,以及良好的思维品质。
教学重点和难点:
教学重点:根据给出的长方体的长宽高,确定与所求面对应的棱。
教学难点:运用长方体和正方体表面积的基本计算方法,灵活地解决实际问题。
教学过程:
一、基本练习回顾旧知
课件出示长方体和正方体
要求长方体或正方体的表面积必须知道什么?
根据给出的数据可以求出哪些面的面积?
要求表面积怎样列式计算?
学生在练习本中列式计算→小组内互相检查→个别汇报
二、变式练习探索本质
课件出示图片
在实际生活中,物体的表面并不总有6个面,老师带来了一幅图,请看,这些物体的表面各有几个面,缺少了哪个面?
学生看图判断,口头回答
同学们的判断真准确,也就是在解决有关长方体和正方体表面积有关问题时,我们首先要判断要求物体哪些面的面积,而不能盲目地列式。
下面老师这里有2道题,请同学们先判断是求物体地哪些面,然后再列出算式。
课件出示题目
杂货店售米用的木箱(上面没有盖),长1.2米、宽0.6米、高0.8米,
1.制作这样一个木箱至少要用木板多少平方米?
2.如果把木箱放在地上,占地多少平方米?
当我们求长方体的表面积的时候,首先要判断要求哪几个面的面积,缺少了哪个面;再确定所求的'面对应的棱的数据,这样才不至于在计算中出现错误。
3.如果木箱外面四周都刷上油漆(底面不刷),刷油漆的面积一共有多少平方米?
抓审题,引导学生想出利用木箱的侧面展开图进行计算更简便。
学生独立列式→同位互相检查→集体讲评
下面这道题,你们又能不能找准求哪些面,对应哪些棱呢?能准确判断地同学请列出算式。
4.在木箱的四周贴上商标纸,宽度是0.2米,贴这个木箱要用商标纸多少平方米?
学生尝试列式→提出审题困惑的地方→了解商标纸的“宽”实际上就是长方体的“高”发生了变化,长和宽都没有变
我们刚才围绕售米用地木箱,解决了4道题,这4道题有的是求5个面的面积、有的是求1个面的面积,有的是求4个面地面积,所以我们再解决有关题目地关键在于判断要求哪些面,找准与面所对应的棱。
三、检测练习巩固强化
这是同学们在解决问题是出现的5种列式方法,请同学们当当小老师,判断对还是错,然后在小组中交流意见,说说理由。
课件出示题目
一个橡皮擦的外包装长3厘米、宽2厘米、高0.5厘米,做这样一个外包装至少要用硬纸多少平方厘米?
(1)3×2×2+2×0.5×2()
(2)(2×0.5+3×0.5)×2+5×2()
(3)3×2×2+3×0.5()
(4)(3×2+3×0.5)×2()
(5)(2+0.5)×2×3()
学生独立思考作出判断→进行小组交流→汇报
三、综合练习发展提高
同学们真不错,不仅能自己准确找到求哪些面的面积,还会对同学的错误进行判断说理,那你能够用你地本领解决下面地问题吗?
课件出示题目
学校要给美术室重新装修,美术室长8米,宽6米,高4米。
1.工人叔叔给美术室的地面铺上地砖,铺地砖的面积是多少平方米?
2.如果每平方米用4块地砖,至少需要准备多少块地砖?
3.粉刷教室屋顶和四壁,除去门窗和黑板的面积20平方米,粉刷的面积是多少平方米?
4.如果每平方米用涂料0.25千克,至少需要涂料多少千克?
独立完成→小组中进行互评、说理→选取代表说说小组中出现的解决问题的方法有哪些。
在解决实际问题的过程中,我们除了要准确地运用方法列式计算以外,还要考虑生活地实际情况,才能够合理地解决问题。
四、全课小结
同学们,我们今天学习了什么?你有什么收获?
汉屈群策,策屈群力。上面这5篇数学《长方体和正方体的表面积》的教学设计就是宣传员为您整理的人教版长方体和正方体的表面积教学设计范文模板,希望可以给予您一定的参考价值。