《组合图形的面积》教案优秀6篇

100 2023-11-07 20:44 精优范文

作为一位兢兢业业的人民教师,就不得不需要编写教案,教案有助于顺利而有效地开展教学活动。如何把教案做到重点突出呢?为了让您对于组合图形的面积教学设计的写作了解的更为全面,下面宣传员给大家分享了6篇《组合图形的面积》教案,希望可以给予您一定的参考与启发。

数学组合图形的面积教案 篇一

《组合图形的面积》教案优秀6篇

课前准备

教师准备PPT课件

教学过程

⊙谈话揭题

1.谈话。

(1)我们学过哪些平面图形?你知道它们的周长、面积的计算公式吗?

预设

生1:我们学过三角形、长方形、正方形、平行四边形、梯形、圆和环形等平面图形。

生2:三角形的面积计算公式是“底×高÷2”。

(2)你们学过哪些立体图形?你们知道它们的表面积、体积的计算公式吗?

预设

生1:我们学过长方体、正方体、圆柱、圆锥。

生2:长方体的表面积……

2.揭题。

我们曾经学过的这些图形,一般称为基本图形或规则图形,这节课我们来复习组合图形、不规则图形的相关知识。

⊙回顾与整理

1.提问:如何求组合图形、不规则图形的周长或面积?

(一般通过“割补”“平移”“旋转”等方法,将它们转化成求基本图形周长或面积的和、差等)

2.提问:如何计算立体组合图形的表面积或体积?

(1)学生分组讨论。

(2)指名汇报。(学生自由回答,合理即可)

(3)教师小结。

在计算立体组合图形的表面积时,可以把每个面的面积进行累加,也可以借助视图来求表面积。

在计算立体组合图形的体积时,有的要把几个物体的体积相加来求体积,有的要从一个物体的体积里减去另一个物体的体积,这要根据具体情况而定。

无论是分割还是添补,都是把复杂的图形转化成简单的图形。

⊙典型例题解析

1.课件出示典型例题1。

(1)求阴影部分的面积。(单位:cm)

分析本题考查学生求组合图形面积的能力。

因为阴影部分是不规则图形,所以可以采用阴影部分的面积=长方形的面积-大三角形的面积-小三角形的面积的方法来求面积。

解答20×16-12×20÷2-8×16÷2=136(cm2)

(2)下面是两个完全相同的直角三角形,其中一部分重叠在一起,求阴影部分的面积。(单位:cm)

分析从图中可以看出,阴影部分是一个梯形,但梯形的上、下底和高都不知道,所以无法直接求出它的面积。

观察图形可以看出:阴影部分的面积加上三角形EFC的面积等于大三角形DEG的面积,而梯形ABEF的面积加上三角形EFC的面积等于大三角形ABC的面积,且两个大三角形的面积相等,所以阴影部分的面积与梯形ABEF的'面积相等,只要求出梯形ABEF的面积就可以求出阴影部分的面积。

解答(8-3+8)×6÷2=39(cm2)

2.课件出示典型例题2。

将高都是1m,底面半径分别是5m、3m和1m的三个圆柱组成一个物体,求这个物体的表面积。

分析本题考查的是求立体组合图形表面积的能力。

如图,这个物体由三个圆柱组成,仔细观察可以发现:向上的露在外面的三个面的面积之和(两个圆环和一个圆)正好等于大圆柱一个底面的面积(或者说相当于大圆柱上底面的面积)。

物体的表面积=大圆柱的表面积+中圆柱的侧面积+小圆柱的侧面积

解答2×3.14×52+2×3.14×5×1+2×3.14×3×1+2×3.14×1×1

=157+31.4+18.84+6.28

=213.52(m2)

数学组合图形的面积教案 篇二

教学内容:

92和93页练习十八

教学目标:

明确组合图形的意义;知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

教学过程:

一、复习。

“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:S=ab

“第二个图形呢?”

......

学生分别口答后,教师在每个图的下面写出相应的计算面积的公式。

教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。

二、认识组合图形

1、让学生指出92页页的四幅图有哪些图形?

2、引导学生把下面的图形,组合成多边形(展示台上拼)

对学生的拼出的图形,有选择地出示其中的几个。(如下所示)

分别说出这些图形是由哪几个简单的图形组合而成。

师:怎样计算这些组合图形的面积呢?(板题)

二、组合图形面积的计算。

1.讨论计算上面拼成的组合图形的面积。(生板演其余每组完成一图)

订正,讨论第一图的两种方法。

5×5+5×6÷2[5+(5+6)]×5÷2

=25+15=16×5÷2

=40(平方厘米)=40(平方厘米)

2.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。

图表示的是一间房子侧面墙的形状。

它的面积是多少平方米?

如果不分割能直接算出这个图形的面积吗?(引讨横虚线的`作用)怎样计算这个组合图形的面积呢?(讨论方法后,再打开书计算,同时指名板演)

5×5+5×2÷2

还能用其他的划分方法求出它的面积吗?(分组讨论)

汇报讨论结果。可能有下面情况。

[5+(2+5)]×(5÷2)÷2×2

小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积,但要注意分割图形时,应当考虑计算的方便,特别要有计算面积所必需的数据。(比如--图示,能容易找出所需的数据吗?)

三、巩固初步

1.做一做/书93页

2.练习十八/第1题

3.练习十八/第2题

(1)由中队旗引入

(2)算出它的面积。(单位:厘米)--可能有下面几种情况

S总=S梯×2S总=S长-S三

5.练习十八/第3、4题

四、拓展练习

练习十八8

课后记:

组合图形的面积教学设计 篇三

设计说明

本节课的内容是在学生已经学习了长方形、正方形、平行四边形、三角形和梯形的面积计算方法的基础上进行教学的。在教学中以引导学生经历知识的探究过程,突出思维训练为主要目标。

1.以学生为课堂学习的主体,关注学生已有的学习基础和学习经验。在教学过程中,选择适合学生的学习素材,设计适合学生的教学活动,让学生自主地投入到学习中,教师只作为学生课堂学习的引导者、合作者。

2.重视对学生估算意识和能力的培养。在教学过程中,引导学生主动进行观察、猜测、验证、推理与交流等数学活动,让学生经历数学知识的探究过程,感受成功的快乐。

3.完成课堂活动卡,把学生的算法进行归纳总结,分类整理,让学生在感受算法多样性的同时,形成归纳概括的能力。

课前准备

教师准备:PPT课件

学生准备:学具卡片

教学过程

⊙创设情境,复习引入

1.引导学生回忆常见平面图形的面积计算方法。

(课件出示长方形、正方形等图形,指名回答各自的面积计算公式)

2.引导学生观察组合图形的特点。

(课件出示由长方形、正方形、三角形等组合而成的图形)

师:同学们观察这些图形,它们分别是由哪些图形组成的呢?(学生观察后回答)

师讲解:这样的图形,我们称为组合图形。今天我们就一起来探究组合图形面积的计算方法。

设计意图:通过复习旧知,使学生兴致勃勃地投入到新知的学习中去,变好奇心为浓厚的学习兴趣。

⊙合作交流,探究新知

1.估计组合图形的面积。

(课件出示教材88页例题图)

师:请同学们观察一下,这是什么图形?(组合图形)

师:这是智慧老人家客厅的平面图。智慧老人准备给客厅铺上地板,你们知道应该买多少平方米的地板吗?

(1)学生估计至少要买多少平方米的地板。

(2)组内交流估计的方法。

预设

生1:把客厅看成长方形,6×7=42,客厅的面积不到42m2。

生2:把客厅看成边长是6m的正方形,估计其面积是36m2。

2.实现转化,明确求组合图形面积的解题思路和解题方法。

(1)质疑:怎样求这个组合图形的面积呢?

(引导学生根据刚才的估计策略把组合图形转化成已经学过的规则图形,再计算其面积)

(2)动手实践,探究转化的方法。

(引导学生利用自己手中的学具,把组合图形转化成已经学过的图形)

①小组合作探究,将探究的结果填在课堂活动卡上。

②各组组长汇报本组的转化方法和转化结果,教师进行汇总。

师:你们是怎样转化的?分别转化成了什么图形呢?

分割法:

添补法:

割补法:

(3)观察比较,优化解题方法。

师:在这些转化方法中,哪些方法比较简单、容易计算呢?

预设

生:在这些方法中,图一、图二、图三、图四比较简单,容易计算。

师:在进行图形转化时,我们的要求是简单、易算。

组合图形的面积教学设计 篇四

教学内容:义务教育课程标准实验教科书小学数学五年级上册第92至93页的内容。

教学目标:

1、认识组合图形,会把组合图形分解成已学过的平面图形。

2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。

4、通过拼组图形,使学生感受数学与现实生活的密切联系,体会数学带给大家的生活美。

教学重点:探索并掌握组合图形的面积计算方法。

教学难点:理解并掌握组合图形的组合及分解方法。

教具准备:多媒体课件

学具准备:各种有色卡纸、胶水、剪刀等。

教学过程:

一、复习铺垫:

同学们,老师想知道你们已经学会了计算哪些平面图形的面积?

二、创设情境,激趣导入。

师:大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的建筑物,好吗?请同学们欣赏时认真想想:你发现了什么?(课件展示)

师:同学们观察得真仔细!除了这些外,老师也发现了一些这样的图形:

(课件展示)

我们学过这些图形吗?

请同学们认真观察,这些图形有什么共同的特征?

左边由几个图形组成?右边呢?大家想想看一个图形还可能是由几个图形组成的呢?

像这些由几个简单的图形组合而成的图形,我们给它取个什么名字好呢?你是怎么知道的?(板书:组合图形)这节课你们想探究组合图形的哪些知识?

三、自主学习,探究新知。

1、组合图形的分解:

师:组合图形在日常生活中有着广泛的应用,我们一起来认识生活中的组合图形。

⑴电脑出示书第92页的四幅主题图。

师:认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开书本92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?

⑵四人小组讨论。

⑶小组到实物投影机上展示各种分法。

⑷让学生举例说说生活中的组合图形。

同学们,开动脑筋想想:生活中哪些地方还有组合图形?

2、自主解决例题。

师:同学们真棒呀!知道生活中存在着很多美丽的组合图形,那如果老师想知道这些组合图形有多大,实际上是求什么?(板书:的面积)你们会求吗?下面老师考考大家是不是真的会?

⑴出示例题4

⑵生独立解答。还有其他解法吗?如果有困难,小组内互相帮助。(两学生板演)

⑶生汇报。

师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同。所以请同学们想想,求组合图形面积时关键是做什么?(板书:分解)

⑷生看书质疑。

师:下面老师再考考你们是不是真的明白。

3、出示做一做。问:这块地是由哪些简单图形组成的?

⑴生独立计算。

⑵生展示思路。

四、应用新知,解决问题:

师:同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的问题。

1.选择题:

(1)

上图阴影部分的面积是()

①6平方厘米②10平方厘米③5平方厘米

(2)下面是一块正方形空心地砖,它实际占地面积是()

①40×40+13×13 ②40×40-13×13③40×40

(3)下图的面积计算式子是()

①12×5+8×6.5②12×5+8×6.5÷2③8×6.5+(8+12)×5÷2

师:通过刚才的练习,你认为该怎样求组合图形的面积?

生自由发言。

师小结:可见求组合图形的面积可以用相加的方法,也可以用相减的方法。(板书:相加或相减)

2.求中队旗的面积。

师:看来今天大家都掌握得很好。可是老师被一个难题难住了。咱们班同学准备去秋游,学校要求我们制作一面中队旗。(出示中队旗)可老师不知道要用多少布。同学们能否用今天所学的知识来帮帮老师呢?动手算一算。请小组内分工合作。

(1)出示讨论提纲:

你们组能想出几种算法?有没有更简便的方法?

看哪一小组分工合作的最好?速度最快?

(2)小组分工合作。

(3)展示学生的各种算法。

师生小结:从练习中我们知道在求组合图形的面积时,要根据已知条件对图形进行分解,不是任意分解都能计算的。分解图形时要考虑尽量用简便的方法计算。

(板书:根据已知条件进行分解)

五、新知的拓展:组拼组合图形

谢谢你们,老师终于知道了需要买多少布了。早上老师又接到一个任务,学校的艺术节快到了,要展览同学们的作品。老师想利用这节课把这个任务完成好,大家愿意吗?请各小组用几个简单的图形组合成一个美丽的图案。看哪一小组拼得图案最美丽,就把他们组的作品拿到艺术节上去展览。同学们赶快动手吧。

1、学生合作组拼。

2、展示评价学生的作品。

3、选择其中一幅学生作品,让学生说说该怎样做才能求出它的面积。

六、总结:

通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的最好?有哪些不明白的地方?

附:板书设计

教学设想:

《数学课程标准》的基本理念中指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的;学生的数学学习活动应当是一个生动活泼、主动的和富有个性的过程。如何把这个基本理念应用到数学课堂教学中呢?在教学《组合图形的面积》这一课中,我针对这一理念,作了尝试,创设了生动的生活情境,精心设计了学生的学习内容。

五年级上册数学《组合图形的面积》教案 篇五

一,教学目标

1,使学生在自主探索的活动中,归纳计算组合图形面积的多种方法。

2,能根据各种组合图形的条件,有效地选择计算方法进行解答,并能运用所学知识解决生活中相关的实际问题。

3,培养学生探索数学问题的积极性,增强学生学习数学的信心和兴趣。

二,教材分析

本节课是五年级上学期第五单元第一课时,在本节课之前,学生已经学习了长方形,正方形,平行四边形,三角形,梯形五种图形的面积计算方法,本课时在此基础上学习组合图形面积的计算,是前面所学知识的发展和应用,也是日常生活中经常需要解决的问题。

三,学校及学生状况分析

我校是一所新建学校,生源比较复杂,学生素质参差不齐。我所任课的班级学生在数学学习方面尽管有一定的差异,但整体素质较好,思维比较活跃,对学习,探索数学问题有比较浓厚的兴趣。

四,教学设计

(一)情境导入。

师:同学们玩过七巧板吗

(学生举手示意,几乎所的学生都玩过。)

(评析:学生从幼儿园时代就开始接触七巧板,教师从七巧板入手,容易激发学生的学习兴趣。)

师:(电脑出示以下图形)这些就是用七巧板拼出的图形,你觉得分别像什么

图1 图2

生:图1像一个机器人。

生:图2像一条金鱼。

师: 你能看出他们分别是由哪些图形拼成的吗

生:图1是由5个三角形,一个平行四边形,一个梯形拼成的。

生:图2也是由5个三角形,一个平行四边形,一个梯形拼成的。

(二)认识组合图形。

师:我们已经学习了五种平面图形,请同学们从这些简单的平面图形中挑几个,拼成一个较复杂的图形,并想想你拼的图形像什么 (课前准备学具袋)

(学生独立拼摆。)

师:谁愿意把你拼的图形展示给大家

(学生用实物投影展示拼出的图形,并说说像什么。)

(评析:让学生充分体会组合图形的形成,是由若干个简单的图形组成的,从而把复杂的问题简单化,易于学生学习。)

师:同学们展示的这些图形有什么共同特点呀

生:我发现这些图形都是几个图形拼出来的。

生:这些复杂的图形都是用几个简单图形拼成的。

师:我们把这样的图形叫做组合图形。(板书:组合图形)

(三)探索简单组合图形面积计算方法。

1,师:你能算出自己拼出的组合图形的面积吗

生:4个三角形的面积相加就是棋盘面积,或者直接计算正方形的面积。

生:长方形的面积加上三角形的面积再加上小梯形的面积就是房子面积。

……

师:同学们用的方法有什么相同之处

生:都是把几个简单图形的面积加起来。

2,教师出示下列图形( 单位:米):

师:这是小华家客厅地面的平面图,现在准备在客厅铺上木地板。小华的爸爸说:"你已经上五年级了,算算至少要买多少平方米的地板吧。"小华接受任务就开始思考,可他发现客厅的形状不是学过的平面图形。我们同学能想办法帮小华算出客厅的面积吗

师:请同学们小组合作,计算出这个图形的面积,看哪些组的方法又多又巧。

(学生合作讨论计算,教师巡视。)

师:哪个组能给大家介绍你们的方法,并说一说为什么这样做

(学生利用实物投影展示分割方法和计算过程,陈述思考的过程)

生:我们把这个图形分成两个长方形,再把这两个长方形的面积相加。

师:为什么要分成两个长方形呀

生:我们会计算长方形的面积,分成的两个长方形的面积加起来就是这个图形的面积。

生:我们分成了两个梯形,把这两个梯形面积加起来就行了。

生:……

学生介绍不同的方法,如下图所示:.(单位:米)

师:我们采用的方法有什么共同的特点呀

生:都把组合图形进行了分割。

师:为什么要进行分割

生:为了得到我们学过的平面图形。

师:同学们采用的就是人们计算组合图形面积常用的一类方法,叫做分割法。

(板书:分割法)

(评析:这一环节使学生明白,对组合图形分割的意义,以及分割的必要性。同时,让学生体会到,分割的方法不同,但思路都是把复杂的图形转化为简单图形。)

师:除了分割法外,还有没有别的方法可以计算这个组合图形的面积呢

(学生小组讨论。)

生:是不是可以补上一块,成为我们学过的图形。

生:我这样补上一个小长方形,成了一个大长方形。(见下图)

师:这样能计算原来组合图形的面积吗

生:用新得到的大长方形面积减去补上的小正方形面积就可以了。

师:我们班的同学真是太棒了,这就是计算组合图形面积的另一类方法,叫做添补法(板书:添补法).

小结:我们可以利用分割法或添补法计算组合图形的面积。

(评析:通过让学生自己动手操作,使学生理解并掌握了运用分割法或填补法计算组合图形面积,并知道了分割图形时,要考虑所给的条件和计算的方便。在交流多种方法的过程中,也培养了学生的发散思维能力)

(四)巩固练习与应用

1,数学课本第76页练一练第1题的左边一题。

师:可以怎样求下列组合图形的面积

(学生独立思考,画出辅助线)

师:谁可以把自己的想法告诉大家

(学生利用投影演示分割或添补的过程,说出计算的思路。)

生1:我把图形分割成一个三角形和一个长方形。

生2:我把图形分割成一个长方形和一个梯形。

生3:我把图形分割成一个三角形和一个梯形。

生4:我把图形补上一个梯形,成为一个大长方形。

生5:我把图形补上一个三角形,成为一个大梯形。

(学生分别介绍计算的方法后,选择自己喜欢的方法进行独立计算。)

2,出示数学课本第76页的试一试。

如图,一张硬纸板剪下4个边长是4厘米的小正方形后,这张硬纸板还剩下多大的面积

师:这个问题是求哪个部分的面积

生:求红色部分组合图形的面积。

师:你能用自己喜欢的方法独立解决这个问题吗

(学生独立计算解答。)

师:谁来把自己的好方法介绍给大家

生:我把红色部分分割成三个长方形,再把他们的面积加起来。

生:我先把长方形硬纸板的面积算出来,再减去四个剪下的小正方形的面积。

(评析:通过本环节的练习,使学生的思维得到提升,有利于同伴之间的交流与学习。)

(五)课堂总结

师:这节课你有什么收获

生:我知道了什么是组合图形。

生:我学会计算组合图形的面积了。

生:我知道可以用分割法或添补法计算组合图形的面积。

师:同学们真是了不起,经过积极的思考,利用已经学过的知识解决了遇到的新问题,还想出了这么多巧妙的方法。

五,教学反思

组合图形面积是学生学习了长方形,正方形,平行四边形,三角形,梯形的面积的基础上进行教学的,是这些知识的发展,也是日常生活经常需要解决的问题。在本节课的设计和实施中,我根据新课程的理念,进行了大胆的尝试,达到了良好的教学效果。主要有以下几点:

1,充分发挥学生的主体作用,相信学生的能力,热情鼓励学生的探索活动,给予学生充足的时间和思维空间。由学生合作探索简单组合图形面积的计算方法,肯定学生积极的探究活动,使学生有更多的发展空间,尽最大限度地发展学生的观察思考探究能力,增强了学生学习数学的兴趣。

2, 我认为本课时的重点是使学生发现理解掌握计算简单组合图形面积的方法和策略。所以在教学中,重点放在学生思考理解把简单组合图形分割或添补成已经学过图形的方法,明确计算组合图形面积的思路。本节课教学过程也说明,学生在理解发组合图形的计算方法时,实现了预期的教学效果。

六,案例点评

⒈情境引入自然简洁,贴近学生,很好地吸引了学生的注意,激发了学生的学习兴趣,同时发展了学生的想象力,使学生感受到数学中的美。

⒉学生获取新知识的过程,就是学生自主探索,合作讨论的过程。计算组合图形面积的方法几乎都是由学生发现并通过汇报交流获取的,教师只是学生自主学习的组织者,合作学习的参与者。

⒊在巩固应用时,突出本课时的重点。在教学过程中,师生的主要精力是用于观察,思考计算各种简单组合图形面积的方法和策略,使学生能根据各种组合图形的条件,有效地选择方法进行计算和解答。

组合图形的面积教学设计 篇六

学习目标:

1.知识目标:通过动手操作使学生理解组合图形的含义,理解并掌握组合图形的多种计算方法,并正确地计算组合图形的面积。

2.能力目标:通过学生自主探索,合作交流,激发学生的积极性和主动性。从而归纳组合图形面积的方法。

3.情感目标:在探索,实践活动中使学生获得成功的体验,感受数学知识的广泛应用。渗透转化的数学思想和方法。

教学重点:能根据条件求组合图形的面积。

教学难点:理解分解图形时简单图形的差。

教具准备:图形卡片

教学过程:

一、联系学生生活,引入新课。

数学教学,要紧密联系学生的生活实际。新课开始之前,我由猜图形引出:

1.实物投影:同学们,你们说说这些图形像什么?

师:今天老师先和大家玩一个猜图形的小游戏。出示图形:猜猜它们像什么?

师:很简单,很容易吧!但是在这个简单的游戏中却蕴含着丰富的数学知识。今天就让我们一起去探索、去研究。

2.出示基本图形,从而复习已学过的基本知识。

师:在这两个拼成的图形中,有哪些是你认识的图形?梯形是哪里来的?还有一个学过的图形这里没有出现,它是什么呢?(贴出图形:正方形、长方形、三角形、梯形、平行四边形)

二、教学新课。

学生亲身体验和感知易于获得感性经验,提高实际操作能力。而观察、操作、讨论等都是数学活动中最常用的方法。因此,在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自进行最广泛意义的实验、操作及通过观察结果、提出问题、讨论并自己寻找答案。

教学新课时,我首先让学生说一说、拼一拼、分一分。根据学生前面猜的结果,提出:自己用这些基本图形拼出自己喜欢的图案?

1.在拼图活动中认识组合图形。

师:同学们,不要小看了这五个基本平面图形,它能把我们带到神奇的图形世界,请你们也拼出一个你喜欢的图形。(独立完成)

师:同学们刚才拼出了各式各样的图形,那么,谁能来介绍一下,你拼出的图形像什么?用到了哪些学过的基本图形?

生:利用实物投影展示自己的作品。

师:同学们说得真好,那么请你们看一看老师和你们所拼的各种不同图形,它们有没有共同的特点呢?(生自由发言)

师:虽然拼出的图形它们的形状不同,但都是由几个简单的图形拼出来的,所以我们把这些图形叫作组合图形。(板书:组合图形)

师:大家做得真不错,都可以成为小设计师了。那你们能不能从组合图形中发现基本图形呢?出示两个图形。

师:说说这里面有你认识的图形吗?你是怎样看出来的?

师:大家说得都不错,那你能不能做一做 ?(在题纸上做一做)

师:学生展示交流结果。

(选择虚线最合适,和图形中的实线加以区分。帮助我们解决组合图形面积的计算的这条虚线我们就叫它辅助线。)

师:刚才大家的学习都很积极努力,接下来要继续加油呀!

2.生:找到了组合图形和基本图形之间的关系,同时也理解了什么是组合图形。这时候,学生的积极性比较高,充分看出了让学生参与教学活动的教学效果。但是,在小组活动时,有的学生可能没有充分发挥自己的才能。

我看到学生比较积极,立刻抓住这个机会,对他们说:“你们想不想知道这些组合图形的面积呢?”孩子们齐声说道:“想!”于是我就利用课件出示了书中的例题,于是就分小组寻找解决组合图形面积的方法。

3.在探索活动中寻找计算方法。出示例题:

师:小华家买了新房子,计划在客厅铺地板,请大家看一看,出示图形。

师:现在请你估计一下,客厅的面积有多大?

师:这个图形实际上就是一个什么图形?

师:要想做到不浪费,不少买,我们应该怎么办呢?(板书:面积)

师:那么你想怎样求这个图形的面积呢?

学生立即四人一组开始活动,情绪高涨,主动学了起来。有的组找到了不同的方法。但有的组人数较多,没有参与到其中,浪费了时间,这是我在教学中需要改进的地方。

小组活动:请同学们利用自己手上的题纸,分一分,算一算。

师:谁能来代表你们组说说是怎样计算这个图形的面积呢?那么为什么要把它分成两个长方形或其他图形呢?(学生逐步介绍了自己探索中采用的分割方法)

学生很喜欢在课堂上留给他们自己学习的空间这样的学习方式。接着就是让孩子们展示自己的研究结果,并且说出自己的想法。根据学生所说发给他们小贴画,学生非常高兴。根据他们自主学习的过程,问道:“你发现了什么?”从而,总结出不同的最基本的求组合图形的方法。

师:根据不同的方法,请学生给这些方法分一分类。

师:板书:分割法和添补法。

师:在这些方法中,第几种解题方法计算起来比较快?为什么?(实物投影展示几种方法)

师:说说你喜欢那种方法?为什么?

师:虽然我们采用了不同的方法解决了这个问题,但是结果都是一样的,因此,在解题过程中要多角度思考问题,寻求多种方法解决问题。

利用比较,深化认识。让学生对照板书或者手中的不同方法,让学生想:你会选择哪种方法,为什么?从中选择最优的方法。

让学生在生活中找一找组合图形,因为组合在实际生活中应用比较广泛。我觉得学生有一种对知识的渴求,也喜欢在生活找到所学的知识。

三、习题设计:

1.出示图形进行练习

试一试:一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。

(1)这张硬纸板还剩下多大的面积?

(2)有一面墙,粉刷这面墙每平方米需用0.15千克涂料,一共要用多少千克涂料?

(3)选择你喜欢的组合图形,计算出它的面积(生活中你所见到的组合图形)。

四、小结。

师:说说你今天最大的收获。关于组合图形的面积的计算,你还有什么不懂或需要提醒大家注意的地方?

把学到的知识应用到生活中去,解决生活中的问题,这才是根本目的。于是我出示了学校粉刷墙这道题以及自己选择身边的组合图形来算一算的这个问题,让今天的知识紧密地联系了学生的生活实际,这时要求学生独立完成,培养学生解决问题的能力。

三人行,必有我师焉。上面这6篇《组合图形的面积》教案就是宣传员为您整理的组合图形的面积教学设计范文模板,希望可以给予您一定的参考价值。

最近更新