相反数教案 篇一
关键词:班主任;培养;育好
中图分类号:G632 文献标识码:B 文章编号:1002-7661(2015)01-094-01
教师设计教案的过程是教学艺术的创造过程,优化的教学程序是教师教学设计的能力体现与教学理念的展示过程,也是学生获得数学知识和科学方法、领略数学思想p探求真理的过程。教学过程中教学理念和课堂教学的结构层次分明,教学各个板块的时间分配得当。尤其是导入的设计,重p难点突破的设计,课堂教学结构的设计更应有详细的介绍。教学中应多设计一些有思维力度的问题来激活学生的思维,迅速调节课堂气氛,使学生随时处于一种饱满的热情中。本文以《有理数乘法法则》为例:我是这样设计的:
一、教学目标
1、知识技能目标
识记:有理数乘法法则。
理解:有理数乘法法则,两个有理数相乘,积的符号如何确定,建立初步的数感。
运用:能正确使用有理数乘法法则进行乘法运算。
2、过程性目标
经历实际问题抽象为代数问题的过程,经历对有理数乘法法则的探索过程,加深对法则的理解和正确使用。
3、自主学习
培养和发展学生的观察、归纳、猜测、验证的能力。学会与他人合作交流,感受成功的喜悦,建立自信。
二、教学重点和难点
重点:有理数乘法法则的运用。
难点:经历法则的探索过程,加深对法则的理解。
三、教学过程
1、创设情境,引入课题
(1)利用多媒体课件演示:秀丽的风景,一列火车飞驰而去,一只可爱的小甲虫,从路标牌出发,沿东西走向的铁轨爬行让学生观察图中看到的景物,进行联想回答。
问题1:小甲虫以3mMmin的速度向东爬行2min,那么它现在位于原来位置的哪个方向?相距多少米?
学生思考、讨论,列出算式:3×2=6 m
能用数轴来表示这一事实吗?动手画一画。
问题2:小甲虫以3mMmin的速度向西爬行2min,那么结果有何变化?
学生模仿问题1进行讨论和探究、交流,分析位置的方向、距离有何变化。
列出算式:(-3)×2=-6(m)
要求学生再用数轴表示该式的意义。
2、交流探讨
引导学生比较两个算式,左边的因数有什么不同,右边得到的积有什么不同。学生展开讨论。
由学生讨论概括出下面的一般规则:两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积相反数。
【提示】引导学生通过观察、比较和尝试,并通过数轴来探求和发现规律:两数相乘,若把一个因数换成它的相反数,则所得的积也是原来的积的相反数。
(1)、试一试:用上面得到的规律计算。
①3×(-2)=?把它与3×2=6进行比较会有什么结果?
②(-3)×(-2)=?把它与(-3)×2=-6进行比较,结果如何?
③(-3)×0=?
④0×2=?
让学生经历动手尝试和探讨的过程,教学中应注意引导学生利用上面获得的规律来解释,并要求学生能模仿问题1和问题2设计这4个式子所能表示的实际意义,并得出后两个式子的结果,加深对有理数乘法的理解。
【提示】让学生经历动手尝试和探索的过程,为进一步探索和概括有理数乘法法则奠定基础。引导学生运用上面发现的规律,验证和解释两个数相乘的结果和符号以及对算式的实际意义展开讨论,培养学生合作能力、交流思维过程的能力,以及用数学来解决实际问题的意识和能力。
(2)、仔细观察上面的几个算式,你会发现什么规律?讨论:怎样确定两个有理数的积的符号?有一个因数是0时结果怎样?
【提示】用“发现法”开启学生的思维,运用共同讨论、观察、探究和发现规律,学习用推理的思维方法去思考问题,主动寻求事物的一般规律。发现和概括出如何确定两个有理数的积的符号,从中探求规律,理解并得出有理数乘法法则。
3、运用和巩固
(1)、学生接力赛
规则:每组先选一个代表进行扮演,做错时由本组同学改正,直至做对后再选另一个同学做第二题,又快有正确的组获胜,给予加分或扣分。
用多媒体出式练习题:教材第64页练习2中选8道题编成两组进行游戏。
(2)、抢答:用多媒体出示(教材第64页练习3)
①3×(-1) ②(-5)×(-1) ③×(-1) ④0×(-1)
⑤(-6)×1 ⑥0×1 ⑦2×1 ⑧1×(-1)
观察上述结论,启发学生归纳得出结论:一个数乘-1,得到的积是什么?一个数乘1呢?
【提示】从特殊到一般,再从一般到特殊,树立辩证思维的观点,观察练习3的特点,结合想一想的问题,从特殊情况出发,探讨寻求一般规律。课堂上这种辩证思想的渗透,其目的是使学生逐步感知研究数学问题的一些基本方法。
4、课堂小结和回顾
(1)通过本节课的学习你学会了什么知识?本节课的学习活动中你最大收获是什么?
引导学生把有理数乘法和加法法则进行比较,归纳异同,使知识系统化。
(2)请同学们评价一下,哪位同学在这结课中表现最优秀?
(3)通过本节课的学习活动,你还有什么疑虑和思考?
5、延伸与拓展
(1)、选择题
①两个有理数的和是负数,积是正数,则这两个有理数是
( )
A.两个正数 B.两个负数
C.一正一负 D.两个正数或两个负数
②两个有理数的和是0,积为负数,则这两有理数是( )
A.互为倒数 B.互为相反数 C. 有一个为0 D.两个负数
在数学教学中,不仅要求学生掌握基础知识和应用技能,而且要重视对学生的数学思维方法和创造思维能力的培养。学习从数学的角度提出问题、理解问题,体验问题解决的过程,使学生在学习中感受成功的喜悦,建立自信,从而积极参与数学学习活动,激发学生强烈的求知欲。
此外,开放式教学模式要求教师在教学中要从学生的认知水平和已有的经验出发,创设有助于学生学习的情境,引导学生通过思考、实践、交流,从而学会学习,学会思考,获得知识,掌握技能。
参考文献:
[1] 赵光千。李亚英等编著光明日报出版社出版的《有效上课》
相反数教案 篇二
那种“满堂灌”、“填鸭式”,教师的教学用具也不仅仅是一支粉笔、
一 一本教案、另加一块小黑板。现代信息技术给教师的教育教学工作带
来巨大的变革,为教师的教育教学实践提供了创新的媒介。作为一个
初中数学教师,如何运用电教手段激发学生的数学学习兴趣,改进学
生学习数学的方法,培养学生探究数学问题的能力,并努力使教法和
学法实现和谐的统一,近年来,我作了一些探究和尝试。
一、运用电教手段,激发学生的数学学习动机,培养学生的数学
学习兴趣
学生的学习动机是在学习需要的基础上产生的,这就要求
教师有计划、有目的地通过教学活动,使学生比较具体地感受到所学
知识在现实生活中的作用,从而产生多种多样的学习需要,并促进这
些需要转化为正确的学习动机,这样才能使学生始终保持自觉的、积
极的学习状态。
在七年级平面几何《引言》教学中,我设计了用多媒体展示现实
生活中许多常见的精美图案,让学生体会几何图形的美,同时使学生
? 领会到几何图形的实用价值,激发学生的学习动机。然后,让学生运
‘ 用学过的点、线、面、体知识,动手设计并给画一幅美丽的图案。
法国教育家卢梭说得好:“教育的艺术是使学生喜欢你所教的东西。”
初中生已经不像小学儿童那样偏重于情感上的依赖,而是开始有了较
高的独立评价的能力。培养学生的数学学习兴趣,除了采取经常对学生进行前途教育,帮助学生树立远大的理想,还应养成学生的良好学
习习’溃。组织课外兴趣小组等手段,更重要的是要善于运用电教手段,
合理安排教学内容,灵活运用多种多样的教学方法。例如,《相反数》
一节教学中可设计一条数轴,在数轴上设计两个对称运动的物体,旁
边的数据显示物体运动的单位长度,引入“相反数”的概念,加深学
生对知识的理解,寓教于乐,培养学生学习的兴趣。
二、运用电教手段,优化学生数学学习方法,培养学生的数学逻
辑思维能力
优化学生的数学学习方法,就是运用电教手段,在优化
教法的同时,根据学生的年龄特征,创设符合学生发展规律,充分发
挥学生主动性和能动性,保持学生最佳学习心态,并使之成为和谐统
一的情景、方式和方法。
在初中数学课堂中,通过优化教法,改进学生的学习方法,运用
电教手段,提高学生的数学学习能力,我着重从以下几方面作了尝试。
l、抽象概念形象化,帮助学生识记、理解。如:在学习绝对值
概念时,可以制作一个课件,上面演示一个动画过程,一个小球从“-5”
这个数表示的位置沿着直线向原点运动,旁边的数据显示其滚动过的
距离。让学生从物体的运动过程中和运动的结果来理解绝对值的几何
意义,从而正确理解绝对值的概忿。在讲二次函数fftj,t念时,也可以
制作如下课件,多媒体上显示一个动画过程,一个小球沿着斜坡向下
滚动,旁边的数据显示其速度和滚动过的距离,让学生来测定小球沿
斜坡下滑时其速度与距离之间的关系,从对客观事物的测量、实践中
得到对函数概念的理解。“任何抽象的、枯燥的东西应该都可以具体化、生动化。”新时代的教师应充分运用电教手段来实现它,只有这
样,舒展心灵的教学艺术才会源源不断。
2、动静结合,变换图形,帮助学生思考。几何图形的变换在数
学教学中有着重要位置,通过图形的变换,不仅可以激发学生的学习
一 兴趣,同时可以促进学生思考,锻炼学生的思维。当然,解决数学问
‘ 题的方法很多,课件的设计也要根据具体的数学问题进行设计,以求
最佳的教学效果。
三、运用电教手段着力提高学生探究数学问题的能力
世界著名
的数学家和数学教育家弗赖登塔尔说:“学生学习数学的唯一正确的
方法是实行‘再创造’,也就是要学的东西由学生自己发现或创造出
来。教师的任务是引导和帮助学生去进行再创造,而不是把现成的结
论灌输给学生。”
学生数学能力的培养是一个系统工程,借助电教手段可促进学生
数学能力的提高,但电教手段不是唯一的手段,影响学生数学能力的
相反数教案 篇三
【关键词】问题驱动 函数解析式 复习教学
【中图分类号】G632 【文献标识码】A 【文章编号】1674-4810(2015)19-0077-03
复习课往往知识点多、密度大、教学时间紧促,在有限的教学时间内,如何用一个重要、关键的问题为核心,从整体的角度连贯整节课的教学内容,形成一种以点盖面的课堂问题驱动式教学,促进学生对所学知识的理解,在实施中以“二次函数的解析式”复习课为载体,从数学课堂教学的流程:情境导入――对话交流――变式拓展――梳理概括四个方面进行了操作例释。
一 问题提出
从新课程所提倡的“指导――自主学习”的角度来讲,复习课的教学要强调以下两点:(1)独立性和个性。要注重引导学生独立地、富有个性地构建知识网络。(2)灵活性和变通性。要通过知识的比较和应用将知识激活、学活。只有这样,才能实现知识向能力的转化和升华。本学年,我校数学教研组确立了“问题驱动形式下的复习课构建”的课题研究,要求教师能根据教学内容的条条内在线索,精心设计题目,找到一个“牵一发而动全身”的关键问题设计教学思路,从整体的角度连贯整节课的教学内容,形成一种以点盖面的课堂问题驱动式教学,引导学生深入浅出地进行理解,那么,学生的思维品质将不断得到培养,自主探究学习数学的积极性将不断提升,真正起到事半功倍作用。
二 课例操作与例释
下面就以一堂课例研究“二次函数的解析式复习”为载体,通过对“问题驱动形式下的复习课构建”操作的一次前后教研经历,通过对比、分析,并从理论层面上深入反思。以下是第一次上这节课的基本流程:
1.情境导入
师:在我们的家乡有许多美丽的石拱桥(出示美丽
的拱桥图),同学们说说看这些拱桥是什么形状的?
生:抛物线形。
师:很好!今天我们就一起来复次函数,请同学们回忆一下二次函数解析式的三种基本形式。……
(数学来源于生活,通过一个能激情引趣的具体情境,引起学生学习的兴趣,引导他们进入学习的状态,并和学生一起复次函数解析式的三种基本形式。)
2.对话交流
根据下列条件,请你选择恰当的形式求二次函数关系式。(1)已知抛物线过三点,(0,1)、(1,3)、(-1,1);(2)已知抛物线的顶点是(-1,-2),且过点(1,10);(3)已知抛物线经过点(1,0)、(2,0)、(3,4)三点;(复习用待定系数法求二次函数的解析式,并根据所给条件的特点选用最恰当的形式求解。)
已知二次函数的最大值是2,图像顶点在直线y=x+1上,并且图像经过点(3,-6),如图2所示。求该二次函数的解析式。(加深难度,提升学生结合图像分析题意,解决问题的能力。)
3.变式拓展
变式一:若将上题中的函数图像向左平移一个单位,再向下平移2个单位,则该图像的函数解析式为 。
(复习通过平移,得到二次函数的解析式。)
变式二:若将该函数绕其顶点旋转180°,你能说出图像的解析式吗?
变式三:若将该函数关于坐标轴对称呢?
(拓展提高,教师利用多媒体动态演示旋转和轴对称,引导学生得到了变换之后的二次函数的解析式。)
4.梳理概括
今天,通过对二次函数解析式的复习,我们回顾了二次函数解析式的三种基本形式,图像的平移、旋转、轴对称等变换。
首先,《数学新课程标准》要求下的中学数学教学,对于问题情境的预设已引起普遍重视,它能使枯燥、抽象的数学问题更贴近社会生活和学生实际。本节课用家乡美丽的抛物线形石拱桥引入,为进入课堂的主题开一个好头。经大家讨论、改进后,第二次开课的课堂导入环节如下。
故事情境――有引有导:
师:学完二次函数之后,我校数学兴趣小组的同学们利用假期时间,在数学老师带领下进行了一次课外实践活动(同时投影石拱桥图片)。沿途,同学们看见一个抛物线形拱形桥洞,于是对其进行了测量。如图3,测得该抛物线形拱形桥洞离水面的最大高度为4m,跨度为10m,问:你能建立适当的直角坐标系,求出这条抛物线所对应的函数关系式吗?
教师里出现一阵轻微的讨论声,过了一会儿马上安静了下来,许多同学开始在事先发的工作单上求解了。教师在教室内巡视辅导,当观察到大多数学生完成了之后,发现了几种不同的建立直角坐标系以及求解的方法,于是,教师适时地进行总结。
师:同学们刚才求解析式的方法是待定系数法(幻灯复习其三步骤)。通常求解析式时要根据图像特征来设(幻灯复次函数的三种基本形式和缺陷式所对应的图像特征)。
最后师生们一起选出最简单的一种方法,力求解题方法最优化。
前后对比及变化:这一次的课堂导入,仍然是从具体的生活情境中来,不过与前一次相比,多了一个具体的故事情节,同时,我们有引有导,从中生成了一个实际的二次函数的问题,从而顺理成章地进入了本节课知识点的梳理回忆。
其次,一节课要复习哪些内容教师一定要明确,并且要有重点,避免全盘抓,但都抓不好的现象。第二次开课的对话交流环节我们更注重了各教学环节的衔接。
教学衔接――顺水推舟:
教师幻灯出示学生工作单上最多见的三种建立直角坐标系的方法及所求得的对应解析式。
师:如果将图4中的抛物线竖直向下平移4个单位(单位长度:1m),你能写出平移后的抛物线解析式吗? 你发现什么?
学生思考后不难发现,通过平移,图4中的抛物线可以转化为图5中抛物线。
师:那么,图6的抛物线可以看成是由图4的抛物线怎样平移得到呢?
前后对比及变化:从第一个环节――三种基本形式的复习进入第二个环节――图像的平移。
再次,教师在进行课堂提问时往往预设较多,当学生的思维活动与教师课前的预设(环节预设、问题预设等)产生冲突的时候,教师要独具“慧眼”,根据生成性问题及时追问,以疑问促进学生进行正确而深入的思考。例如:
预设生成――机智善诱:
师:若将图6所示的抛物线关于X轴对称,你能说出变换后抛物线的解析式吗?
学生思考一定的时间以后,教师又利用多媒体动态演示,让同学们更加形象地观察到抛物线的轴对称变换,然后让学生自己进行了总结。
生:抛物线关于x轴对称时,图像的形状没有改变,只是开口方向相反了,所以a变成了原来的相反数,同时,因为对称轴没有改变,所以b也变为原来的相反数,最后根据图像与y轴交点的变化,我们可以得到c的符号,最后得到解析式为……
此时,教师及时追问,以疑问促进学生更深入的思考。
师:你还有其他求变换后抛物线解析式的方法吗?
学生进行了小声的交流讨论,果然,又有了新的惊喜。
生1:抛物线关于x轴对称时,除了a变成了原来的相反数之外,顶点横坐标不变,纵坐标变为原来的相反数,所以我们可以利用顶点式写出变换后的抛物线解析式……
生2:抛物线关于x轴对称时,图像上的各点均满足横坐标不变、纵坐标变为原来的相反数,所以我们可以将(x,-y)代入原解析式,即可得到变换后的抛物线解析式……
师:(变1)若将图6所示的抛物线关于y轴对称呢?
学生的回答踊跃起来……
师:(变2)若将图6所示的抛物线绕其顶点旋转180°,你能说出变换后抛物线的解析式吗?
万变不离其宗,学生的思维活跃了,继续沉浸在思考的快乐之中……
前后对比及变化:很自然地进入这一教学环节之后,在教师巧妙适时的“追问”下,课堂进入了“高潮”,学生的思维被激活了,真正成为了学习的主人,教学的难度也进一步提高。可见,教师的机智善诱,无疑是促进学生发展、实现有效学习的重要教学策略。
最后,新课程教学观认为,教学不只是课程的执行和传递,更是课程的创新与开发;不只是实施计划、教案,照本宣科的过程,也是课程内容持续生存和转化的过程,是帮助每一个学生进行有效的学习、共同发展的过程。因此当课堂接近尾声时,我们设计了一个回归目标的拓展延伸环节。
课外延伸――回归目标:
师:归途中,同学们来到一个广场休息,看见一抛物线形喷水池(如图7),水流在各方向沿形状相同的抛物线落下。建立如图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处B(1,2.25),求该抛物线的解析式。如果不考虑其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?
由于时间原因,这道题最后没有全部完成,学生作为作业课后解决。
前后对比及变化:数学来源于生活,又应用于生活,我们常常通过建立函数模型,把生活中的实际问题转换为数学问题后,利用二次函数的知识来解决。数学教学过程并不仅仅是纯粹数学知识的学习和死记硬背,而是以问题为中心的数学思维的过程。
课后,无论是上课教师还是听课教师,都明显感觉到本节课的课堂教学与前一次相比,显得更加有序、有效。这节课的教学让学生感受到现实生活中存在大量的数学信息,体验了用数学的视角提出问题并解决实际问题,感觉到学生动起来了,课堂鲜活起来了。
三 体会与反思
通过这次的课例研究活动,我校数学组的全体教师对以问题驱动的形式引入和知识脉络的整体化设计构建复习课的课堂教学方式在教学中的成效感触很深,最后,我将大家的感受体会进行了总结。
1.在教学设计上,凸显了整体教学设计的艺术
这种通过对知识脉络的整体化设计来构建复习课的课堂教学方式,追求一种“执一而驭万”的教学效果。目标似乎很单一,而牵涉的内容却是全面的、综合的、举一反三的,能实现知识的系统构建与资源的有效共享。
2.在教学理念上,形成了以学生为主体的势态
这种以问题为纽带进行教学的方式能有效地帮助学生积极张扬个性、促进学生的自主发展,培养学生的问题意识、怀疑精神和创新意识,培养学生的探索合作精神,可见,其核心是一切为了帮助学生成长。
3.加强了知识点的内在联系
教材所呈现的知识点往往是比较零散、琐碎的,而这种教学方式把握了知识的主体脉络,更好地将各知识点融会贯通,挖掘教育的价值,培养了学生的逻辑思维能力、综合运用等能力等。
4.有利于促进教师教学水平和专业素养的提高
思前想后,方成好课。理清逻辑关系、挖掘隐性、目标内化与理解教材知识,对教师综合能力的要求更高,专业发展的力度也更大。在这样的教学过程中,教师的成长是十分迅速的。
参考文献
相反数教案 篇四
教学建议
一、知识结构
二、重点、难点分析
本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础.
1.平方差公式是由多项式乘法直接计算得出的:
与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并同类项后仅得两项.
2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差.公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.
只要符合公式的结构特征,就可运用这一公式.例如
在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了.
3.关于平方差公式的特征,在学习时应注意:
(1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数.
(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).
(3)公式中的和可以是具体数,也可以是单项式或多项式.
(4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算.
三、教法建议
1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的能力.
2.通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即
(a+b)(a-b)=a2+ab-ab-b2=a2-b2.
这样得出平方差公式,并且把这类乘法的实质讲清楚了.
3.通过例题、练习与小结,教会学生如何正确应用平方差公式.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),
(1+2x)(1-2x)=12-(2x)2=1-4x2
(a+b)(a-b)=a2-b2.
这样,学生就能正确应用公式进行计算,不容易出差错.
另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性.
教学目标
1.使学生理解和掌握平方差公式,并会用公式进行计算;
2.注意培养学生分析、综合和抽象、概括以及运算能力.
教学重点和难点
重点:平方差公式的应用.
难点:用公式的结构特征判断题目能否使用公式.
教学过程设计
一、师生共同研究平方差公式
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.
让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:
两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.
在此基础上,让学生用语言叙述公式.
二、运用举例变式练习
例1计算(1+2x)(1-2x).
解:(1+2x)(1-2x)
=12-(2x)2
=1-4x2.
教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.
例2计算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)
=(2a3+b2)(2a3-b2)
=(2a3)2-(b2)2
=4a6-b4.
教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算.
课堂练习
运用平方差公式计算:
(l)(x+a)(x-a);(2)(m+n)(m-n);
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).
例3计算(-4a-1)(-4a+1).
让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.
解法1:(-4a-1)(-4a+1)
=[-(4a+l)][-(4a-l)]
=(4a+1)(4a-l)
=(4a)2-l2
=16a2-1.
解法2:(-4a-l)(-4a+l)
=(-4a)2-l
=16a2-1.
根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.
课堂练习
1.口答下列各题:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b).
2.计算下列各题:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.
三、小结
1.什么是平方差公式?
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.
四、作业
1.运用平方差公式计算:
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
(5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);
2.计算:
(1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);
相反数教案 篇五
一、教学目标(
1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算.,全国公务员共同天地
2.培养学生运用公式熟练进行计算的能力.
3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志.
4.渗透数学公式的结构美、和谐美.
二、学法引导
1.教学方法:讲授法、练习法.
2.学生学法:勤于练习,在练习中理解同底数幂的适用条件及运算方法.
三、重点·难点及解决办法
(一)重点
同底数幂的运算性质.
(二)难点
同底数幂运算性质的灵活运用.
(三)解决办法
在运算中应强化对公式及性质的形式、意义的理解,同时应加强对符号的判别.
四、课时安排
一课时.
五、教具学具准备
投影仪、胶片.
六、师生互动活动设计
1.复习同底数幂的乘法法则并能正确的判断是否合理使用了该法则,让学生能进一步准确掌握该法则.
2.通过两组举例(师生可共同完成),教师应侧重帮助学生分析解题的方法,并及时提醒学生注意易出错的环节.
3.再通过三组不同形式的题型从不同的角度训练学生的思维能力,以提高学生的辨别能力和运算能力.
七、教学步骤
(-)明确目标
本节课重点是熟练运用同底数暴的乘法运算公式.
(二)整体感知
要准确掌握同底数幂的乘法法则,并会运用它熟练灵活地进行同底数幂的乘法运算,对于运算法则,我们除了应掌握它们的正用:外,还要善于根据题目的结构特征,学会它们的逆向应用:,当然这个难度较大.在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆.乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同.
(三)教学过程
1.创设情境、复习导入
(1)叙述同底数幂乘法法则并用字母表示.
(2)指出下列运算的错误,并说出正确结果.
①
②
③
强调:①中的指数不为0,指数相加时不要漏加的指数.②不是同类项不能合并.③同底数幂相乘,指数相加不是相乘.
(3)填空:
①,
②,,
2.探索新知,讲授新课
例1计算:
(1)(2)(3)
解:(1)原式
(2)原式
(3)原式
例2计算:
(1)(2)
(3)(4)
解:(1)原式
(2)原式
(3)原式
(4),全国公务员共同天地
或原式
提问:和相等吗?
3.巩固熟练
(1)P93练习(下)1,2.
(2)计算:
①②
③④
(3)错误辨析:
计算:①(是正整数)
解:
说明:化简错了,是正整数,是偶数,据乘方的符号法则本题结果应为0.
②
解:原式
说明:与不是同底数幂,它们相乘不能用同底数幂的乘法法则,正确结果应为
(四)总结、扩展
底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题.
八、布置作业
P94A组3~5;P95B组1~2.
参考答案
略.
九、板书设计
投影幂
例1例2练习
小结:
相反数教案 篇六
【关键词】初中数学 思想方法
九年义务教育全日制初级中学数学《新课程标准》中指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
目前初中阶段,主要数学思想方法有:数形结合的思想、分类讨论的思想、整体思想、化归的思想、转化思想、归纳思想、类比的思想、函数的思想、辩证思想、、方程与函数的思想方法等。
新课程把数学思想、方法作为基础知识的重要组成部分,在数学《新课程标准》中明确提出来,这不仅是课标体现义务教育性质的重要表现,也是对学生实施创新教育、培训创新思维的重要保证。新教材内容的编写也着重突出了数学思想和方法。同时,在教师教学参考书中提示教师随时注意渗透基本数学思想和方法,为教师进行数学思想方法的教学提供了方便。
下面就初中思想方法的教学谈几点浅见。
一、在数学概念的建立过程中,渗透数学思想方法
数学概念的建立过程主要表现为概念的形成和概念的同化过程,前者是以直接经验为基础的,通过对具体事例分析、抽象、概括出他们的本质属性,从而形成数学概念;后者是以间接经验为基础,是用已经学过的概念去学习新的概念。
在初中数学中,概念的形成和同化的过程,渗透了许多的数学思想方法,教师要在教学中,从概念的引入、理解、深化和应用等各个阶段,适时适度地渗透数学思想方法。
如:在讲解绝对值概念时,可以通过一对互为相反数(如5和-5),让学生在数轴上表示出来(即指出对应的两点表示5和-5),通过这两点到原点的距离相等,使学生对绝对值的概念有个感性认识。进而用字母表示数,使学生对绝对值概念的认识上升到理性阶段,从而可以概括出绝对值的概念。在整个过程中,渗透了对应的思想,数形结合的思想和由具体到抽象的概括的方法。如果要深层次从一个数的性质角度考虑就可得到:
二、在法则、公式、定理的建立和推导过程中,体现数学思想方法
数学课本中展现在我们面前的法则、公式和定理都是经过整理而成的精炼的结论,隐去了科学家发现和推导的整个思维过程。如果教师讲授时着意体现出法则、公式、定理的发现和推导过程所反映的数学思想,将有利于学生对法则、公式和定理的理解,优化学生所学知识的组织方式,发展学生数学思维,提高解决问题的能力。
例如:在讲授有理数减法法则和除法法则时,通过对“减去一个数,等于加上这个数的相反数”;“除以一个数等于乘以这个数的倒数”的讲解,使学生从中意识到,有理数减法可以以相反数为媒介转化为加法;除法可以以倒数为媒介转化为乘法。这一个转化过程充分体现了化归思想和辩证统一思想。
在讲解圆周角定理证明时,启发学生指出圆心与圆周角的所有可能的位置关系。学生不难发现他们的位置关系有三种:①圆心在圆周角一边上;②圆心在圆周角的内部;③圆心在圆周角的外部。因此,要证明圆周角定理必须要分这三种情况进行讨论。这就体现出分类的思想方法。
三、在解题教学中,突出数学思想方法
数学思想方法是以教材中数学素材为载体,它贯穿于问题的发现和解决的全过程。教材中的例题不仅具有典型型和代表性,而且还隐含着丰富的数学思想方法。在初中数学中,概念的形成和同化的过程,渗透了许多的数学思想方法,教师要在教学中,从概念的引入、理解、深化和应用等各个阶段,适时适度地渗透数学思想方法。
例1 解不等式3(1-x)﹤2(x+9),并把它的解集在数轴上表示出来。
教师在讲解本例时,可先从一元一次方程入手,将不等式的解法与方程进行对比,找出它们在解法上的异同点。
解方程:3(1-X)=2(x+9),并在数轴上表示它的解。
解:去括号,得:3-3X=2X+18
移项,得:-3x-2x=18-3;合并同类项,得:-5X=15;
系数化成1,得,x=-3(如下图)。
解不等式3(1-x)﹤2(x+9),并把它的解集在数轴上表示出来。
解:去括号,得:3-3X
这种讲法突出了类比思想,通过类比不仅使学生认识到解一元一次不等式和解一元一次方程的一般步骤是类似的,而且突出了当不等式两边都乘以(或除以)同一负数时,不等号方向要改变的这一不同点,从而加深了学生对不等式解法的理解。
总之,数学教材中蕴含着极其丰富的数学思想方法。作为一名数学教师在教学中应站在方法论的角度,从每篇教案的精心设计到课堂教学的各个环节都要有计划,有步骤地安排好数学思想方法的教学。在指导学生解题时应着重加强数学思想方法的指导。这样做,不仅可以避免“题海战”,减轻学生学习负担,达到提高数学教学质量的近期目标,而且对于全面提高学生数学素质具有长远意义。
参考文献:
相反数教案 篇七
关键词:初中数学 教学质量 提升方法
在现代初中数学教学的过程中,教师要在传统的教学模式的基础上进行改革和创新,这是保证学生的学习质量的必然举措。然而改革不能够脱离实际,不能够凭空想象,而必须要在实践的基础上,结合教学经验进行探索,而后再将探索所得放在实践中进行检验。
1、面向整体进行教学设计
教材内容的设计和完善是教师在开展实践教学过程中应该始终探索和发现的课题内容,让学生可以在课堂教学中充分发挥自己的主导作用是十分关键的。尤其是在新课程改革背景下,数学教学更加注重对学生的学习能力的培养,而不是单纯的进行基础理论知识灌输,这样一来,教师就要面向整体学生设立一定的课堂教学模式,让学生充分明白自己的学习才能,从而可以有一个学习平面扩展到一个空间学习,自主进行预习和复习。比如说,在教授一些较新的数学概念时,可能有些晦涩的数学内容学生理解起来有一定的难度,教师这时候就要追求让学生去自主谈及的方法进行学习训练和练习。比如说可以让学生利用自己在课堂学习中收获的一些学习技巧和解题方法去解决一些应用型问题,然后再在这种应用型问题的解题过程中逐渐积累一定的学习经验,最终达到对数学概念有一个较为独特全面的学习感知,推动自己对数学概念的理解。
2、及时讲评作业
作业讲评是课堂教学反馈的重要手段,是提高课堂教学质量的重要一环。作业讲评是批改作业的延续,高质量的作业讲评,要求教师事先必须做好充分的准备:批改记录、讲评计划及注明详讲、略讲与不讲,善于捕捉典型的错误和代表性题目。
作业讲评要及时。俗话讲:趁热打铁。及时讲评,可使学生马上更正错误,在自己作业的基础上,再次思考,发现自己的失误和不良的思维习惯、方法,更好地把握知识的准确性,加深掌握深度,充分调动学生的积极性,不要只是机械地给出正确答案,而要注意教给学生解题的方法。有争议的问题,可以让学生一起讨论,各抒己见,再由教师归纳、总结
3、优化教学过程,培养学习兴趣
当前,在数学学科的教学中,“教学脱轨现象”较为严重。所谓“教学脱轨现象”,是指学生在教学过程中,偏离和违背教师正确的教学活【WWW.JINGYOU.NET】动和要求,形成教与学两方面的不协调,这种现象直接影响着大面积提高教学质量。“教学脱轨现象”主要表现在课内不专心听讲,课外不做作业,不复习巩固。这种现象的直接后果是不少学生因为“不听、不做”到“听不懂,不会做”,从而形成积重难返的局面。在整个教学过程中,怎样消除学生的“教学脱轨现象”呢?我的体会是,必须根据教材的不同内容采用多种教法,激发培养学生的学习兴趣。例如,在讲解“有理数”一章的小结时,同学们总以为是复习课,心理上产生一种轻视的意识。鉴于此,我把这一章的内容分成“三类”,即“概念关”“法则关”“运算关”,在限定时间内通过讨论的方式,找出每个“关口”的知识点及每个“关口”应注意的地方。如“概念关”里的正、负数、相反数、数轴、绝对值意义,“法则关”里的结合律、分配律以及异号两数相加的法则,在“运算关”强调一步算错,全题皆错等等。讨论完毕选出学生代表,在全班进行讲解,最后教师总结。
4、建立和谐的课堂气氛
课堂是老师传授知识的第一阵地,数学知识有90%是在课堂获得。可是一节课只有45分钟,要出色地完成教学任务,教师除了课前要花好几个45分钟钻研教材,弄清知识的点和线,知识的结构和分析数学的难点与如何突破,解决难点外,更要善于创设愉快的教学情境,建立和谐的课堂气氛。同样的课,有的老师上起来轻松愉快,效果又佳,有的老师整堂讲得沉闷,为什么?因为他们关于和谐师生关系创设良好的课堂气氛,她们不单是演讲者、观察者,更是发现者,不断用心去感受,用眼去观察,上课有激情,用感情去点燃学生的智慧,激荡学生的情感波澜。后者老师也用心备课,教案无可挑剔,目的明确,内容完备,方法科学,上课有条理,但学生却没有反映,老师只是一个现场播音员,把教案中所写的从头到尾讲一遍,与学生无关,甚至似乎与学生有仇,整节板着脸,是为了上课而上课,然后上完课大叫“学生不配合,没办法教”,而事实上是教师本身没有努力去创设和谐的课堂气氛。而前者是带着强烈的感情走进教室,做到入课堂则情满课堂,登上讲台则情溢讲台,达到开人心智、启人思维的效果。对课堂偶发的不良现象不气恼,对待调皮的学生更是如此,不在课堂上大加批评,有问题的学生,而是留待课后先指出他们的不对之处,再耐心给予讲解,用行动与情感去改变他们,从不放弃他们。让学生在轻松愉快和谐的师生情感交流中,不知不觉地接受了数学知识,完成了学生任务。
5、消除“离教现象”
在整个教学过程中,怎样消除学生的“离教现象”呢?我的认为是,必须根据教材的不同内容采用多种教法,激发培养学生的学习兴趣。例如,在讲解“有理数”一章的小结时,同学们总以为是复习课,心理上产生一种轻视的意识。鉴于此,我把这一章的内容分成“三类”,即“概念关”“法则关”“运算关”,在限定时间内通过讨论的方式,找出每个“关口”的知识点及每个“关口”应注意的地方。如“概念关”里的正数、负数、相反数、数轴、绝对值的意义,“法则关”里的结合律、分配律以及异号两数相加的法则;在“运算关”强调一步算错,全题皆错等。讨论完后,选出学生代表在全班进行讲解,最后教师总结。通过这一活动,不仅使旧知识得以巩固,而且能使学生处于“听得懂、做得来”的状态。
在教学工作中,作为一名教师,我总认为要做个有心人,让数学真正成为学生愿学、乐学的学科,只有这样,才能檠生提供充裕的探索、实践的空间和时间,才能调动大多数同学的学习积极性;才能大面积提高数学教学质量。
参考文献:
[1]陈洁。提高初中数学教学质量之我见[J].魅力中国,2009,(14).
相反数教案 篇八
教学目的
1、使学生理解同类项的意义。
2、使学生掌握合并同类项法则,并应用合并同类项。
3、通过合并同类项的学习,培养学生观察与分类归纳能力。
教学分析
重点:同类项的概念,合并同类项的方法。
难点:多字母同类项的判别与合并。
突破:理解同类项的概念的两个特性,合并同类项,就是合并它们的系数。
教学过程
一、复习
1、回答下列单项式的系数
-4ab2,10x2,-2x,abc,-y3z,2r
2、什么叫多项式?什么叫多项式的项?
3、列代数式:每本练习本x元,王强买5本,张华买2本,两人一共花多少钱?王强比张华多花多少钱?
二、新授
1、引入
问:5x+2x=?5x-2x=?
5x看成是x的5倍,2x看成是x的2倍,所以和是x的7倍,也可逆向运用分配律:5x+2x=(5+2)x,后面的也是一样。
同样,根据分配律有,
-4ab2+3ab2=(-4+3)ab2
以上两项,所含有的字母相同,相同字母的指数也相同。
2、给出同类项的概念
多项式中所含有的字母相同,并且相同字母的指数也相同的项,叫做同类项,几个常数项也是同类项。
例1(P153练习1)回答
找出多项式2x2-5x+x2+4x-3x2-2中的同类项。
有两个特征:(1)各项中所含有的字母相同,(2)相同字母的指数分别相同。(与系数无关,与字母的顺序无关。)
3、合并同类项、合并同类项法则和根据。
(1)、把多项式中的同类项合并成一项,叫做合并同类项
(2)同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
(3)根据:分配律
例2(P153例2)
合并多项式4x2-8x+5-3x2+6x-2的同类项。
(结果为x2-2x+3,解见P153)
例3(P153例3)
合并多项式4a2+3b2+2ab-4a2-3b2的同类项。
析:4a2与-4a2这一对同类项的系数是互为相反数,合并后这两项就互相抵消,结果为0。
解:(见教材P154)
三、练习P153:3,4。
四、小结
要抓住同类项的特征,又要知道合并时只能合并系数。
五、作业
1、P156:A:4。B:1
读书破万卷,下笔如有神。上面的8篇相反数教案范文是由宣传员精心整理的相反数教案范文范本,感谢您的阅读与参考。