老师应该拥有一份属于自己的教案,书写一节课的教学思想,它起着指导和统帅教学的作用,有什么样的教学思想和观念,就会产生什么样的教学效果。下面这8篇高中数学必修五教案是宣传员为您整理的高中数学必修5教案范文模板,欢迎查阅参考。
高中数学必修五教案 篇一
教学目标
1.数列求和的综合应用
教学重难点
2.数列求和的综合应用
教学过程
典例分析
3.数列{an}的前n项和Sn=n2-7n-8,
(1)求{an}的通项公式
(2)求{|an|}的前n项和Tn
4.等差数列{an}的公差为,S100=145,则a1+a3 + a5 + …+a99=
5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=
6.数列{an}是等差数列,且a1=2,a1+a2+a3=12
(1)求{an}的通项公式
(2)令bn=anxn ,求数列{bn}前n项和公式
7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数
8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15,求当n为何值时,Sn有最大值,并求出它的最大值
.已知数列{an},an∈N,Sn= (an+2)2
(1)求证{an}是等差数列
(2)若bn= an-30 ,求数列{bn}前n项的最小值
0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)
(1)设f(x)的`图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列
(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.
11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)
12 .某商品在最近100天内的价格f(t)与时间t的
函数关系式是f(t)=
销售量g(t)与时间t的函数关系是
g(t)= -t/3 +109/3 (0≤t≤100)
求这种商品的日销售额的最大值
注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值。
高中数学必修五教案 篇二
教学分析
本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展。在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小。
通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用。对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程。即能用不等式或不等式组把这些不等关系表示出来。在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望。根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小。
在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上 点的一一对应关系,从数与形两方面建立实数的顺序关系。要在温故知新的基础上提高学生对不等式的认识。
三维目标
1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系。
2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围。
3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美。
重点难点
教学重点:比较实数与代数式的。大小关系,判断二次式的大小和范围。
教学难点:准确比较两个代数式的大小。
课时安排
1课时
教学过程
导入新课
思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课。
思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系。这些不等关系怎样在数学上表示出来呢让学生自由地展开联想,教师组织不等关系的相关素材,让学 生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着。这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课。
推进新课
新知探究
提出问题
1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同。怎样利用不等式研究及表示不等关系
2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。你能举出一些实际例子吗
3数轴上的任意两 点与对应的两实数具有怎样的关系
4任意两个实数具有怎样的关系用逻辑用语怎样表达这个关系
活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同。不等关系强调的是关系,可用符号“》”“》”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a》b”“a
教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系。在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容。
实例1:某天的天气预报报道,气温32 ℃,最低气温26 ℃.
实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA
实例3:若一个数是非负数,则这个数大于或等于零。
实例4:两点之间线段最短。
实例5:三角形两边之和大于第三边,两边之差小于第三边。
实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.
实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
教师进一步点拨:能够发现身 边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢学生很容易想到,用不等式或不等式组来表示这些不等关系。那么不等式就是用不等号将两个代数式连结起来所成的式子。如-7》-5,3+4》1+4,2x≤6,a+2≥0,3≠4,0≤5等。
教师引导学生将上述的7个实例用不等式表示出来。实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|》|AB|,如下图。
|AB|+|BC|》|AC|、|AC|+|BC|》|AB|、|AB|+|AC|》|BC|.
|AB|-|BC|》|AC|、|AC|-|BC|》|AB|、|AB|-|AC|》|BC|.交换被减数与减数的位置也可以。
实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的但可表示为f≥2.5%且p≥2.3%.
对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论。
讨论结果:
(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大。
(4)对于任意两个实数a和b,在a=b,a》b,a应用示例
例1(教材本节例1和例2)
活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法。
点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握。
变式训练
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()
A.f(x)》g(x) B.f(x)=g(x)
C.f(x)
答案:A
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1》0,∴f(x)》g(x).
2.已知x≠0,比较(x2+1)2与x4+x2+1的大小。
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2》0.从而(x2+1)2》x4+x2+1.
例2比较下列各组数的大小(a≠b).
(1)a+b2与21a+1b(a》0,b》0);
(2)a4-b4与4a3(a-b).
活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定。本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点。
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a》0,b》0且a≠b,∴a+b》0,(a-b)2》0.∴a-b22a+b》0,即a+b2》21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),
又a≠b,∴(a-b)2》0,2a2+(a+b)2》0.∴-(a-b)2[2a2+(a+b)2]》0.
∴a4-b4》4a3(a-b).
点评:比较大小常用作差法,一般步骤是作差——变形——判断符号。变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用。
变式训练
已知x》y,且y≠0,比较xy与1的大小。
活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系。
解:xy-1=x-yy.
∵x》y,∴x-y》0.
当y》0时,x-yy》0,即xy-1》0. ∴xy》1;
当y》0时,x-yy》0,即xy-1》0.∴xy》1.
点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论。
例3建筑设计规定,民用住宅的窗户面积必须小于地板面积。但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好。试问:同时增加相等的窗户面积和地板面积, 住宅的采光条件是变好了,还是变坏了请说明理由。
活动:解题关键首先是把文 字语言转换成数学语言,然后比较前后比值的大小,采用作差法。
解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a
由于a+mb+m-ab=mb-abb+m》0,于是a+mb+m》ab.又ab≥10%,
因此a+mb+m》ab≥10%.
所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了。
点评:一般地,设a、b为正实数,且a
变式训练
已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()
A.a1+a8》a4+a5 B.a1+a8
C.a1+a8=a4+a5 D.a1+a8与a4+a5大小不确定
答案:A
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各项都大于零,∴q》0,即1+q》0.
又∵q≠1,∴(a1+a8)-(a4+a5)》0,即a1+a8》a4+a5.
课堂小结
1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中。
2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方。鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究。
作业
习题3—1A组3;习题3—1B组2.
设计感想
1.本节设计关注了教学方法 的优化。经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学 过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式。各种教学方法中,没有一种能很好地适应一切教学活动。也就是说,世上没有万能的教学方法。针对个性,灵活变化,因材施教才是成功的施教灵药。
2.本节设计注重了难度控制。不等式内容应用面广,可以说与其他所有内容都有交汇,历 来是高考的重点与热点。作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响。
3.本节设计关注了学生思维能力的训练。训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线。采用一题多解有助于思维的发散性及灵活性,克服思维的僵化。变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升。
高中数学学习方法技巧总结 篇三
基础很重要,保持耐心多巩固
要学好数学,最关键的是要有一个好的基础。只有打牢数学基础,才能够把高中数学好,同样只有打好基础,才能够数学取得高分。打好基础是最关键的!比如:建一栋大楼,如果地基不稳,不管大楼有多么豪华,都只是华而不实。
想学好数学,对数学感兴趣
其实学好数学最好的办法就是发自内心由衷的想要学习,渴望学习,才能体会到从学习中所收获的乐趣。自己的成就感提升,对于学习数学的积极性也就提高了,觉得数学并没有那么难,就愿意去多接触了。
多做题反复做,有题感
其实学好数学办法就是要大量做题,反复去做,题做多了就知道哪些方面需要自己去加强学习,还有就是同样做数学题做多了就会有题感。有些题,它的类型都是一样的,题做多了之后,即使你不会做,你也会找到一些解题的思路和技巧。
高中数学必修五教案 篇四
教学目标
1.数列求和的综合应用
教学重难点
2.数列求和的综合应用
教学过程
典例分析
3.数列{an}的前n项和Sn=n2-7n-8,
(1)求{an}的通项公式
(2)求{|an|}的前n项和Tn
4.等差数列{an}的公差为,S100=145,则a1+a3 + a5 + …+a99=
5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=
6.数列{an}是等差数列,且a1=2,a1+a2+a3=12
(1)求{an}的通项公式
(2)令bn=anxn ,求数列{bn}前n项和公式
7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数
8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15,求当n为何值时,Sn有最大值,并求出它的最大值
.已知数列{an},an∈N,Sn= (an+2)2
(1)求证{an}是等差数列
(2)若bn= an-30 ,求数列{bn}前n项的最小值
0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)
(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列
(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.
11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)
12 .某商品在最近100天内的价格f(t)与时间t的
函数关系式是f(t)=
销售量g(t)与时间t的函数关系是
g(t)= -t/3 +109/3 (0≤t≤100)
求这种商品的日销售额的最大值
注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值
高中数学必修五教案 篇五
教材分析
本节课重在探究等比数列的前n项和公式的推导及简单的应用。教学中注重公式的形成过程及数学思想方法的渗透,并揭示公式的结构特征和内在联系.就知识的应用价值来看,它是从大量数学问题和现实问题中抽象出来的模型,在公式推导中所蕴含的数学思想方法在各种数列求和问题中有着广泛的应用.就内容的人文价值上看,它的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生数学的思考问题的良好载体.
教学目标
知识与技能: 掌握等比数列的前n项和公式以及推导方法;会用等比数列的前n项和公式解决有关等比数列的一些简单问题.
过程与方法: 经历等比数列前n 项和的推导过程,总结数列求和方法,体会数学中的思想方法.
情感态度与价值观:通过教材中的实际引例,激发学生学习数学的积极性及学习数学的主动性.
教学重点
等比数列的。前n项和公式推导及公式的简单应用
教学难点
等比数列的前n项和公式推导过程和思想方法
教学过程
Ⅰ、课题导入
[创设情境]
[提出问题] “国王对国际象棋的发明者的奖励”的故事
Ⅱ、讲授新课
[分析问题]如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所放的麦粒数总合就是求这个等比数列的前64项的和。下面我们先来推导等比数列的前n项和公式。
高中数学必修五教案 篇六
教学目标
A、知识目标:
掌握等差数列前n项和公式的推导方法;掌握公式的运用。
B、能力目标:
(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。
C、情感目标:(数学文化价值)
(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
(2)通过公式的运用,树立学生"大众教学"的思想意识。
(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的。心理体验,产生热爱数学的情感。
教学重点:
等差数列前n项和的公式。
教学难点:
等差数列前n项和的公式的灵活运用。
教学方法:
启发、讨论、引导式。
教具:
现代教育多媒体技术。
教学过程
一、创设情景,导入新课。
师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。
例1,计算:1+2+3+4+5+6+7+8+9+10。
这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。
二、教授新课(尝试推导)
师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。
上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n—1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。
师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。
高中数学必修五教案 篇七
教学目标
进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式。
教学重难点
教学重点:熟练运用定理。
教学难点:应用正、余弦定理进行边角关系的相互转化。
教学过程
一、复习准备:
1、写出正弦定理、余弦定理及推论等公式。
2、讨论各公式所求解的三角形类型。
二、讲授新课:
1、教学三角形的解的'讨论:
①出示例1:在△ABC中,已知下列条件,解三角形。
分两组练习→讨论:解的个数情况为何会发生变化?
②用如下图示分析解的情况。(A为锐角时)
②练习:在△ABC中,已知下列条件,判断三角形的解的情况。
2、教学正弦定理与余弦定理的活用:
①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦。
分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角。
②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型。
分析:由三角形的什么知识可以判别?→求最大角余弦,由符号进行判断
③出示例4:已知△ABC中,,试判断△ABC的形状。
分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?
3、 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化。
三、巩固练习:
3、作业:教材P11 B组1、2题。
高中数学必修5教案 篇八
教学准备
教学目标
进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式。
教学重难点
教学重点:熟练运用定理。
教学难点:应用正、余弦定理进行边角关系的相互转化。
教学过程
一、复习准备:
1. 写出正弦定理、余弦定理及推论等公式。
2. 讨论各公式所求解的三角形类型。
二、讲授新课:
1. 教学三角形的解的讨论:
① 出示例1:在△ABC中,已知下列条件,解三角形。
分两组练习→ 讨论:解的个数情况为何会发生变化?
②用如下图示分析解的情况。 (A为锐角时)
② 练习:在△ABC中,已知下列条件,判断三角形的解的情况。
2. 教学正弦定理与余弦定理的活用:
① 出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦。
分析:已知条件可以如何转化?→ 引入参数k,设三边后利用余弦定理求角。
② 出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型。
分析:由三角形的什么知识可以判别? → 求最大角余弦,由符号进行判断
③ 出示例4:已知△ABC中,,试判断△ABC的形状。
分析:如何将边角关系中的边化为角? →再思考:又如何将角化为边?
3. 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化。
三、巩固练习:
3. 作业:教材P11 B组1、2题。
熟读唐诗三百首,不会做诗也会吟。以上这8篇高中数学必修五教案是来自于宣传员的高中数学必修5教案的相关范文,希望能有给予您一定的启发。