数学高一上册教案(优秀7篇)

100 2023-10-14 19:16 精优范文

作为一名教职工,总不可避免地需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。教案应该怎么写才好呢?下面的7篇数学高一上册教案是由宣传员精心整理的高一数学范文模板,欢迎阅读参考。

高一数学教案 篇一

数学高一上册教案

教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.

教学目的:

(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

(4)能够正确使用“区间”的符号表示某些函数的定义域;

教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;

教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

教学过程:

一、引入课题

1.复习初中所学函数的概念,强调函数的模型化思想;

2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

(1)炮弹的射高与时间的变化关系问题;

(2)南极臭氧空洞面积与时间的变化关系问题;

(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

备用实例:

我国xxxx年4月份非典疫情统计:

日期222324252627282930

新增确诊病例数1061058910311312698152101

3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

二、新课教学

(一)函数的有关概念

1.函数的概念:

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

记作:y=f(x),x∈A.

其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

注意:

○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

2.构成函数的三要素:

定义域、对应关系和值域

3.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;

(2)无穷区间;

(3)区间的数轴表示.

4.一次函数、二次函数、反比例函数的定义域和值域讨论

(由学生完成,师生共同分析讲评)

(二)典型例题

1.求函数定义域

课本P20例1

解:(略)

说明:

○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;

○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;

○3函数的定义域、值域要写成集合或区间的形式.

巩固练习:课本P22第1题

2.判断两个函数是否为同一函数

课本P21例2

解:(略)

说明:

○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

巩固练习:

○1课本P22第2题

○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?

(1)f(x)=(x-1)0;g(x)=1

(2)f(x)=x;g(x)=

(3)f(x)=x2;f(x)=(x+1)2

(4)f(x)=|x|;g(x)=

(三)课堂练习

求下列函数的定义域

(1)

(2)

(3)

(4)

(5)

(6)

三、归纳小结,强化思想

从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。

四、作业布置

课本P28习题1.2(A组)第1—7题(B组)第1题

高一数学教案 篇二

教学目标

1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法。

(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。

(2)能从数和形两个角度认识单调性和奇偶性。

(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。

2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想。

3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。

教学建议

一、知识结构

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像。

二、重点难点分析

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识。教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明。

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点。

三、教法建议

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来。

(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。

函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。

高一数学教案 篇三

教学目标

1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。

(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;

(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;

(3)通过通项公式认识等比数列的性质,能解决某些实际问题。

2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。

3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。

教学建议

教材分析

(1)知识结构

等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用。

(2)重点、难点分析

教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用。

①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点。

②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点。

③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点。

教学建议

(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用。

(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义。也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义。

(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解。

(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法。 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象。

(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现。

(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用。

教学设计示例

课题:等比数列的概念

教学目标

1.通过教学使学生理解等比数列的概念,推导并掌握通项公式。

2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力。

3.培养学生勤于思考,实事求是的精神,及严谨的科学态度。

教学重点,难点

重点、难点是等比数列的定义的归纳及通项公式的推导。

教学用具

投影仪,多媒体软件,电脑。

教学方法

讨论、谈话法。

教学过程

一、提出问题

给出以下几组数列,将它们分类,说出分类标准。(幻灯片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1, , ,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).

二、讲解新课

请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题。假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列。 (这里播放变形虫分裂的多媒体软件的第一步)

等比数列(板书)

1.等比数列的定义(板书)

根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义。学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的。教师写出等比数列的定义,标注出重点词语。

请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列。学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例。而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当 时,数列 既是等差又是等比数列,当 时,它只是等差数列,而不是等比数列。教师追问理由,引出对等比数列的认识:

2.对定义的认识(板书)

(1)等比数列的首项不为0;

(2)等比数列的每一项都不为0,即 ;

问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

(3)公比不为0.

用数学式子表示等比数列的定义。

是等比数列 ①.在这个式子的写法上可能会有一些争议,如写成 ,可让学生研究行不行,好不好;接下来再问,能否改写为 是等比数列 ?为什么不能?

式子 给出了数列第 项与第 项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式。

3.等比数列的通项公式(板书)

问题:用 和 表示第 项 .

①不完全归纳法

②叠乘法

,… , ,这 个式子相乘得 ,所以 .

(板书)(1)等比数列的通项公式

得出通项公式后,让学生思考如何认识通项公式。

(板书)(2)对公式的认识

由学生来说,最后归结:

①函数观点;

②方程思想(因在等差数列中已有认识,此处再复习巩固而已).

这里强调方程思想解决问题。方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究。同学可以试着编几道题。

三、小结

1.本节课研究了等比数列的概念,得到了通项公式;

2.注意在研究内容与方法上要与等差数列相类比;

3.用方程的思想认识通项公式,并加以应用。

高一数学教学计划 高一数学教学计划指导思想 篇四

1通过对幂函数概念的学习以及对幂函数图象和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。

2使学生理解并掌握幂函数的图象与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。

3培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。

幂函数的性质及运用

幂函数图象和性质的发现过程

问题探究法 教具:多媒体

问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?

(总结:根据函数的定义可知,这里p是w的函数)

问题2:如果正方形的边长为a,那么正方形的面积 ,这里s是a的函数。 问题3:如果正方体的边长为a,那么正方体的体积 ,这里v是a的函数。 问题4:如果正方形场地面积为s,那么正方形的边长 ,这里a是s的函数 问题5:如果某人 s内骑车行进了 km,那么他骑车的速度 ,这里v是t的函数。

以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量) 这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

由学生讨论,(教师可提示p=w可看成p=w1)总结,即可得出:p=w, s=a2, a=s , v=t-1都是自变量的若干次幂的形式。

教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数。

幂函数的定义:一般地,我们把形如 的函数称为幂函数(power function),其中 是自变量, 是常数。 1幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念) 结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别: 对幂函数来说,底数是自变量,指数是常数 对指数函数来说,指数是自变量,底数是常数 例1判别下列函数中有几个幂函数?

① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由学生独立思考、回答)

2幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?

(学生讨论,教师引导。学生回答。)

3幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域?

(学生小组讨论,得到结论。引导学生举例研究。结论:幂指数 不同,定义域并不完全相同,应区别对待。)教师指出:幂函数y=xn中,当n=0时,其表达式y=x0=1;定义域为(-∞,0)u(0,+∞),特别强调,当x为任何非零实数时,函数的值均为1,图象是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外。)

例2写出下列函数的定义域,并指出它们的奇偶性:①y=x ②y= ③y=x ④y=x

(学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。)

4上述函数①y=x ②y= ③y=x ④y=x 的单调性如何?如何判断?

(学生思考,引导作图可得。并加上y=x 和y=x-1图象)接下来, 在同一坐标系中学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示。见后附图1

让学生观察图象,看单调性、以及还有哪些共同点?(学生思考,回答。教师注意学生叙述的严密性。)

教师总评:幂函数的性质

(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1),

(2)如果a>0,则幂函数的图象通过原点,并在区间[0,+∞)上是增函数,

(3)如果a<0,则幂函数在(0,+∞)上是减函数,在第一区间内,当x从右边趋向于原点时,图象在y轴右方无限地趋近y轴;当x趋向于+∞,图象在x轴上方无限地趋近x轴。

5通过观察例1,在幂函数y=xa中,当a是(1)正偶数、(2)正奇数时,这一类函数有哪种性质?

学生思考,教师讲评:(1)在幂函数y=xa中,当a是正偶数时,函数都是偶函数,在第一象限内是增函数。(2)在幂函数y=xa中,当a是正奇数时,函数都是奇函数,在第一象限内是增函数。

例3巩固练习 写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x ②y=x ③y=x 。

例4简单应用1:比较下列各组中两个值的大小,并说明理由:

①0.75 ,0.76 ;

②(-0.95) ,(-0.96) ;

③0.23 ,0.24 ;

④0.31 ,0.31

例5简单应用2:幂函数y=(m -3m-3)x 在区间 上是减函数,求m的值。

例6简单应用2:

已知(a+1)<(3-2a) ,试求a的取值范围。

今天的学习内容和方法有哪些?你有哪些收获和经验?

1、 幂函数的概念及其指数函数表达式的区别 2、 常见幂函数的图象和幂函数的性质。

布置作业:

课本p.73 2、3、4、思考5

高一数学教案 篇五

本文题目:高一数学教案:对数函数及其性质

2.2.2 对数函数及其性质(二)

内容与解析

(一) 内容:对数函数及其性质(二)。

(二) 解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查。题型主要是选择题和填空题,命题灵活。学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用。

一、 目标及其解析:

(一) 教学目标

(1) 了解对数函数在生产实际中的简单应用。进一步理解对数函数的图象和性质;

(2) 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质。

(二) 解析

(1)在对数函数 中,底数 且 ,自变量 ,函数值 .作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确。

(2)反函数求法:①确定原函数的值域即新函数的定义域。②把原函数y=f(x)视为方程,用y表示出x.③把x、y互换,同时标明反函数的定义域。

二、 问题诊断分析

在本节课的教学中,学生可能遇到的问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。

三、 教学支持条件分析

在本节课一次递推的教学中,准备使用PowerPoint 20xx。因为使用PowerPoint 20xx,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。

四、 教学过程

问题一。 对数函数模型思想及应用:

① 出示例题:溶液酸碱度的测量问题:溶液酸碱度pH的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升。

(Ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的关系?

(Ⅱ)纯净水 摩尔/升,计算纯净水的酸碱度。

②讨论:抽象出的函数模型? 如何应用函数模型解决问题? 强调数学应用思想

问题二。反函数:

① 引言:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量。 我们称这两个函数为反函数(inverse function)

② 探究:如何由 求出x?

③ 分析:函数 由 解出,是把指数函数 中的自变量与因变量对调位置而得出的。 习惯上我们通常用x表示自变量,y表示函数,即写为 .

那么我们就说指数函数 与对数函数 互为反函数

④ 在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质?

⑤ 分析:取 图象上的几个点,说出它们关于直线 的对称点的坐标,并判断它们是否在 的图象上,为什么?

⑥ 探究:如果 在函数 的图象上,那么P0关于直线 的对称点在函数 的图象上吗,为什么?

由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线 对称)

⑦练习:求下列函数的反函数: ;

(师生共练 小结步骤:解x ;习惯表示;定义域)

(二)小结:函数模型应用思想;反函数概念;阅读P84材料

五、 目标检测

1.(20xx全国卷Ⅱ文)函数y= (x 0)的反函数是

A. (x 0) B. (x 0) C. (x 0) D. (x 0)

1.B 解析:本题考查反函数概念及求法,由原函数x 0可知A、C错,原函数y 0可知D错,选B.

2. (20xx广东卷理)若函数 是函数 的反函数,其图像经过点 ,则 ( )

A. B. C. D.

2. B 解析: ,代入 ,解得 ,所以 ,选B.

3. 求函数 的反函数

3.解析:显然y0,反解 可得, ,将x,y互换可得 .可得原函数的反函数为 .

【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:对数函数及其性质能给您带来帮助!

高一数学教学计划 高一数学教学计划指导思想 篇六

1.知识与技能目标

(1). 掌握集合的两种表示方法;能够按照指定的方法表示一些集合。

(2).发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力。

2.过程与方法目标

①通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一。因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养。

②教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力

情感态度与价值观目标 感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯;学习从数学的角度认识世界;通过合作学习增强合作意识;培养数学的特有文化——简洁精炼,体会从感性到理性的思维过程。

2、教材分析 本节课位于我校现行教材≤中等职业教育国家规划教材≥数学第一章第一节≤集合≥的第二课时,这节课主要学习集合的表示方法。

集合语言是现代数学的基本语言。通过集合语言的学习,有利于学生简明准确地表达学习的数学内容。集合的初步知识是学生学习、掌握和使用数学语言的基础,是中职数学学习的出发点。

在中职数学中,这部分知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,在后续学习的集合的相关内容和第二章≤不等式≥、

第三章≤函数≥,在代数中用到的有数集、解集等;在几何中用到的有点集,都离不开集合。也是研究数学问题不可缺少的工具。这一课在本章的学习有很重要的意义,也是本章后续学习和后续学习的基础,起到承上启下的作用。

3、学情分析

学生在初中阶段的学习中,虽然已经有了对集合的初步认知,由于中职学生的现状,学生基础比较弱,学习习惯比较差,根据我校的现行教材结合学生的实际情况,为了培养学

生良好的学习习惯,打好基础,对集合的两种表示方法:列举法和描述法通过讲练结合、不断地巩固练习、提高练习来达到标准要求,鼓励学生理解的基础上记忆的学习方法来学习。

本节课采用新知识讲授课的教学模式,教学策略为先熟悉再深入,采用启发式、讲练结合等教学方法,并采用多媒体教学手段辅助教学。

3、教学重难点

重点:列举法、描述法。

难点:运用集合的三种常用表示方法正确表示一些简单的集合

4、教学方法:实例归纳、学生的自主探究、主动参与与教师的引导相结合,充分体现学生在课堂中的主体作用和教师的主导作用。

5、教学手段:多媒体辅助教学——主要是利用多媒体展示图片来增加学生的学习兴趣和对集合知识的直观理解。

6、教学思路:

7、教学过程

7.1创设情境,引入课题

【活动】多媒体展示:1、草原一群大象在缓步走来。

2、蓝蓝的天空中,一群鸟在飞翔

3、一群学生在一起玩。

引导学生举出一些类似的例子问题

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是一群大象、一群鸟、一群学生)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

【设计意图】通过多媒体展示,极大地调动起了学生的积极性,吸引学生的注意力,设置轻松的学习气氛。

7.2步步探索,形成概念

【活动1】观察下列对象:

①1~20以内的所有质数;

②我国从1991—20xx年的13年内所发射的所有人造卫星

③金星汽车厂20xx年生产的所有汽车;

④20xx年1月1日之前与我国建立外交关系的所有国家;

⑤所有的正方形;

⑥到直线l的距离等于定长d的所有的点;

⑦方程x2+3x—2=0的所有实数根;

⑧新华中学20xx年9月入学的所有的高一学生。

师生共同概括8个例子的特征,得出结论,给出集合的含义:把研究对象统称为元素,常用小写字母啊a,b,c….表示,把一些元素组成的总体叫做集合,常用大写字母a,b,c….来表示。

【设计意图】使学生自己明确集合的含义,培养学生的概括能力。

【活动2】要求每个学生举出一些集合的例子,选出具有代表性的几个问题,比

如:

1)a={1,3},3、5哪个是a的元素?

2)b={身材较高的人},能否表示成集合?

3)c={1,1,3}表示是否准确?

4)d={中国的直辖市},e={北京,上海,天津,重庆}是否表示同一集合?

5)f={a,b,c}与g={c,b,a}这两个集合是否一样?

【分析】1)1,3是a的元素,5不是

2)我们不能准确的规定多少高算是身材较高,即不能确定集合的元素,

所以b不能表示集合

3)c中有二个1,因此表达不准确

4)我们知道e中各元素都是属于中国的直辖市,但中国的直辖市并不 只有这几个,因此不相等。

5)f和g的元素相同,只不过顺序不同,但还是表示同一个集合

通过上述分析引导学生自由讨论、探究概括出集合中各种元素的特点,并让学生再举出一些能够构成集合的例子以及不能构成集合的例子,要求说明理由。师生一起得出集合的特征:

1)确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立。

2)互异性:同一集合中不应重复出现同一元素。

3)无序性:集合中的元素没有顺序

4)集合相等:构成两个集合的元素完全一样

【设计意图】引导学生自主探究得出集合的特征:确定性、互异性、无序性,集合相等,培养学生的抽象概括能力,同时使学生能更好的了解集合。

7.3集合与元素的关系

【问题】高一(4)班里所有学生组成集合a,a是高一(4)班里的同学,b是

高一(5)班的同学,a、b与a分别有什么关系?

引导学生阅读教科书中的相关内容,思考上述问题,发表学生自己的看法。 得出结论:①如果a是集合a的元素,就说a属于集合a,记作a∈a。

②如果b不是集合a的元素,就说b不属于集合a,记作b?a。

再让学生举一些例子说明这种关系。

【设计意图】使学生发挥想象,明确元素与集合的关系。

【活动】熟记数学中一些常用的数集及其记法

引导学生回忆数集扩充过程,阅读教科书第3页表格中的内容,认识常用数集记号。

【设计意图】使学生熟记常用数集的记号,以免日后做题时混淆。

7.4集合的表示方法

【问题】由以上内容我们可以知道用自然语言可以描述一个集合,那么有没有其他方式表示集合呢?

7.4.1集合的列举法表示

【活动】尝试用列举法第4页例1中的集合:

1)小于10的所有自然数组成的集合;

2)方程x2?x的所有实数根组成的集合;

3)由1到20以内的所有素数组成的集合;

并思考列举法的特点。

引导学生阅读教科书,自主学习列举法,得出答案:

1)a={0,1,2,3,4,5,6,7,8,9}

2)a={0,1}

3)a={2,3,5,7,11,13,17,19}

通过上述讲解请同学说说列举法的特点:

1)用花括号{}把元素括起来

2)集合的元素可以具体一一列出

【设计意图】使学生学习基本了解用列举法表示集合的方法,并了解列举法的特点。

7.4.2集合的描述法表示

【活动1】提出教科书中的思考题:

1)你能用自然语言描述集合{2,4,6,8}吗?

2)你能用列举法表示不等式x—7<3的解集吗?

学生讨论,师-宣传员§www.xuanchuanyuan.com 生总结:

1)从2开始到8的所有偶数组成的集合

2)这个集合中的元素不能一一列出,因此不可以用列举法表示

引导学生思考、讨论用列举法表示相应集合的困难,激发学生学习描述法的积极性。

引导学生阅读教科书中描述法的相关内容,让学生讨论交流,归纳描述法的特点。

例如2)可以用描述法表示为:a={x?r|x<10}

【设计意图】使学生体会用描述法表示集合的必要性,会用描述法表示集合。

【活动2】引导学生完成第5页例2

1) 方程x2?2?0的所有实数根组成的集合

2) 由大于10小于20的所有整数组成的集合

讨论应当如何根据问题选择适当的集合表示法。学生回答,老师进行总结:

1)描述法:a={ x?r|x2?2?0}

列举法:

2)描述法:a={ x?z|10

列举法:a={11,12,13,14,15,16,17,18,19}

【设计意图】使学生掌握好两种表示法各自的特点,根据题目灵活选择。

7.5课堂小结,学习反思

【问题】1)集合与元素的含义?

2)集合的特点?

3)集合的不同表示方法

引导学生整理概括这一节课所学的知识

【设计意图】归纳整理知识,形成知识网络,并培养学生自主对所学知识进行总结的能力。

8、作业布置,巩固新知

课后作业:习题1.1a组第4题

课后思考作业: ①结合实例,试比较用自然语言、列举法和描述法表示集合时各自的特点和适用的对象。

②自己举出几个集合的例子,并分别用自然语言、列举法和描述法表示出来。

9、板书设计

1.1.1集合的含义与表示

1、元素的含义:把研究对象统称为元素

2、集合的含义:一些元素组成的总体。

3、集合元素的三个特性:确定性,互异性,无序性,集合相等

4、元素与集合的关系:a?a,a?a

5、常用数集与记法

6、列举法

7、描述法

8、课堂小结

高一数学教学计划 高一数学教学计划指导思想 篇七

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会提高的需要。具体目标如下。

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本本事。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。

5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。

6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可理解性等到,具有如下特点:

1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习活力。

2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3、“科学性”与“思想性”:经过不一样数学资料的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维本事,培育理性精神。

4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

1、选取与资料密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以到达培养其兴趣的目的。

2、经过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改善学生的学习方式。

3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

两个班均属普高班,学习情景良好,但学生自觉性差,自我控制本事弱,所以在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算本事太差,学生不喜欢去算题,嫌麻烦,只注重思路,所以在以后的教学中,重点在于培养学生的计算本事,同时要进一步提高其思维本事。

同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些资料。所以时间上可能仍然吃紧。同时,其底子薄弱,所以在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和提高。

2、注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维本事就解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。

5、自始至终贯彻教学四环节,针对不一样的教材资料选择不一样教法。

6、重视数学应用意识及应用本事的培养。

只要功夫深,铁杵磨成针。上面的7篇数学高一上册教案是由宣传员精心整理的高一数学范文范本,感谢您的阅读与参考。

最近更新