鸡兔同笼的解法 例题

0 2024-04-21 04:40 来源:www.xuanchuanyuan.com 手机版

鸡兔同笼的解法 例题-图1

1、列表法

根据鸡与兔的数量和,把所有可能的情况列举出来,找到符合条件的解。一般采用半数列举法,即假定鸡兔各占一半,这样列举可以减少列举的次数,提高效率。

2、图示法

先画出所有的头,再把每个头上画上2只脚,再把剩下的脚画在部分图上,每个图上加上2只脚,直到脚全部用完。这样,有4只脚的就是兔子,2只脚的就是鸡。也可以把每个头上画上4只脚,再从有4只脚的头上取下2只画在没有脚的头上,直到所有的头都有脚。这样有4只脚的就是兔子,2只脚的就是鸡。

3、假设法

假设全是鸡或全是兔,计算脚数与实际脚数的差,分析产生差的原因,利用产生差的原因解题。

变形题注意对假设对象的调整,根据不同的情况做合理假设,不可千篇一律。

4、方程法

利用方程解鸡兔同笼问题的等量关系是:鸡的脚数+兔的脚数=鸡兔脚数和

变形题注意数量关系的变化。

题目:有若干只鸡和兔在同个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔?

解法1:站队法

让所有的鸡和兔子都列队站好,鸡和兔子都听哨子指挥。那么,吹一声哨子让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)。

那么再吹一声哨子,然后再抬起一只脚,这时候鸡两只脚都抬起来就一屁股坐地上了,只剩下用两只脚站立的兔子

站立脚:59-35=24(只)

兔:24÷2=12(只);

鸡:35-12=23(只)

解法2:松绑法

由于兔子的脚比鸡的脚多出了两个,因此把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚。

那么,兔子就成了2只脚。则捆绑后鸡脚和兔脚的总数:35×2=70(只)比题中所说的94只要少:94-70=24(只)。

现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,不断地一个一个地松开绳子,总的脚数则不断地增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只)从而鸡数:35-12=23(只)

解法3:假设替换法

实际上替代法的做题步骤跟上述松绑法相似,只不过是换种方式进行理解。

假设笼子里全是鸡,则应有脚70只。而实际上多出的部分就是兔子替换了鸡所形成。每一只兔子替代鸡,则增加每只兔脚减去每只鸡脚的数量。

兔子数=(实际脚数-每只鸡脚数*鸡兔总数)/(每只兔脚数-每只鸡脚数)与前相似,假设笼子里全是兔,则应有脚120只。而实际上不足的部分就是鸡替换了兔子所形成。每一只鸡替代兔子,则减少每只兔脚减去每只鸡脚的数量,即2只。

鸡数=(每只兔脚数*鸡兔总数-实际脚数)/(每只兔脚数-每只鸡脚数)

将上述数值代入方法

(1)可知,兔子数为12只,再求出鸡数为23只。将上述数值代入方法

(2)可知,鸡数为23只,再求出兔子数为12只。

由计算值可知,两种替代方法得出的答案完全一致,只是顺序不同。由替代法的顺序不同可知,求鸡设兔,求兔设鸡,可以根据题目问题进行假设以减少计算步骤。

解法4:方程法

随着年级的增加,学生开始接触方程思想,这个时候鸡兔同笼问题运用方程思想则变得十分简单。

解:设兔有x只,则鸡有(35-x)只

4x+2(35-x)=94

4x+70-2x=94

x=12

注:方程结果不带单位,从而计算出鸡数为35-12=23(只)

1、公式:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数;

总只数-鸡的只数=兔的只数

2、公式:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数;

总只数-兔的只数=鸡的只数

3、公式:总脚数÷2—总头数=兔的只数;

总只数—兔的只数=鸡的只数

4、公式:鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2兔的只数=鸡兔总只数-鸡的只数

5、公式:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2鸡的只数=鸡兔总只数-兔总只数

6、公式:4×+2(总数-x)=总脚数(x=兔,总数-x=鸡数,用于方程)

有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只

解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着,地面上出现脚的总数的一半,也就是244÷2=122(只)

在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次。因此从122减去总头数88,剩下的就是兔子头数

122-88=34(只),

有34只兔子,当然鸡就有54只。

答:有兔子34只,鸡54只。

上面的计算,可以归结为下面算式:

总脚数÷2-总头数=兔子数.总头数-兔子数=鸡数

最近更新